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Research on omega–3 fatty acids has expanded enormously over the past 10 years.
Beginning with the mid 1970s, most of the research focused on the role of omega–3
fatty acids in the secondary prevention of cardiovascular disease. Epidemiological
observations, animal studies, clinical intervention studies, and studies at the molecular
level firmly established the importance of omega–3 fatty acids, in the prevention and
management of cardiovascular disease. Furthermore, studies on the mechanisms and
the need to balance the omega–6 to the omega–3 ratio for homeostasis and normal
development have been carried out at the molecular level and in transgenic animals
using lipidomics and informatics. It is now accepted that docosahexaenoic acid (DHA)
and arachidonic acid (AA) are essential for brain development during pregnancy, lacta-
tion and throughout the life cycle. Recently, studies on brain and retinal function as well
as mental health have dominated the field. That DHA can affect brain function and
behavior is no longer controversial. The studies on age-related macular degeneration
(AMD) given supplemental DHA have revealed significant interactions between DHA
and genetic variants. In animal experiments, deficiencies in DHA show impairments in
cognitive development correctable by its repletion. Furthermore, the consumption of
DHA or fish oil by humans slows cognitive decline in the aged and in subjects with early
Alzheimer’s disease (AD) and promotes mental development in infants. Over 60 coun-
tries worldwide have supplemented infant formula with DHA and AA, yet the Food and
Nutrition Board of the Institute of Medicine has not determined the nutritional require-
ment of DHA.

There have been a number of volumes in the series of the World Review of Nutrition
and Dietetics (WRND) on various aspects of omega–6 and omega–3 essential fatty
acids (EFA) beginning with Volume 66: Health Effects of Omega–3 Polyunsaturated
Fatty Acids in Seafoods, published in 1991, which truly established the field. It was
followed by Volume 75: Fatty Acids and Lipids: Biological Aspects, published in 1994.
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Volume 83: The Return of Omega-3 Fatty Acids into the Food Supply I. Land-Based
Animal Food Products and Their Health Effects, published in 1998. Volume 88: Fatty
Acids and Lipids – New Findings, published in 2001. Volume 92: Omega–6/Omega–3
Essential Fatty Acid Ratio: The Scientific Evidence, published in 2003. The present
volume 99: Omega–3 Fatty Acids, the Brain and Retina is the sixth in the series, pub-
lished in 2008.

The volume begins with the paper by Artemis P. Simopoulos on ‘Omega–6/Omega–3
Essential Fatty Acids: Biological Effects’ which sets the stage for what follows. Dr.
Simopoulos emphasizes the changes that have taken place in the food supply that led to
high intake of omega–6 and low intake of omega–3 fatty acids, particularly the last 50
years, and the biological effects of the resulting imbalanced omega–6/omega–3 ratio.
Major advances have taken place in the concepts of inflammation and proresolution of
new lipid mediators, lipoxins, resolvins and protectins discovered by using new
approaches mainly lipidomics and informatics. Finally the paper provides an overview
of mental illness and eye disease that are presented in detail in the papers that follow.

A number of epidemiological studies across populations have clearly shown an
inverse relationship between fish intake and depression, as well as cognitive dysfunction
in elderly populations. Animal experiments deficient in DHA have shown deficits in
learning and memory. In some studies in Finland and Japan where the fish intake is
already high, such inverse relationships have not been seen consistently. But in the
majority of studies the data are consistent between low fish intake and prevalence of
major depression. For example, prevalence rates of major depression are 50 times
higher among countries with little seafood consumption compared to countries with
the highest consumption. Furthermore, at autopsy the concentration of DHA is 30%
lower in the dorsolateral prefrontal cortex of subjects with major depression. Of interest
is the fact that three meta-analyses have reported robust treatment effect sizes for
omega–3 long-chain fatty acids that are larger than those reported for most antidepres-
sant pharmaceuticals. Clinical intervention studies have generated data that impulsive
violence, post-traumatic stress disorders, personality and substance abuse disorders
may be prevented or treated using appropriate amounts of omega–3 fatty acids. 

Dr. Hibbeln in his paper ‘Depression, Suicide and Deficiencies of Omega–3 Essential
Fatty Acids in Modern Diets’ reviews the studies of major depression including the eco-
logical and epidemiological aspects, intervention studies, as well as the data on tissue
composition. Dr. Hibbeln concludes that a strong and consistent body of data from eco-
logical, epidemiological, case-control tissue compositional studies and randomized
placebo-controlled trials indicate that low seafood consumption, omega–3 intake and
body compositional status are linked to greater risks for significant depressive symp-
toms. This body of data is evaluated in light of the Hill Criteria for assessing causality.
While substantial work needs to be conducted in the study of omega–3 deficiencies and
increased suicide risk, current data suggests an apparent beneficial effect. Religious
dietary practices followed for centuries are remarkably consistent with current dietary
recommendations issued by international scientific bodies. Modern diets increase the
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likelihood of omega–3 deficiencies, perhaps manifested as depressive symptoms and
self-destructive behaviors.

In the next paper, ‘Application of Serial Structural Magnetic Resonance Imaging
Analysis and Proton and 31-Phosphorus Magnetic Resonance Spectroscopy to the
Investigation of Cerebral Fatty Acids in Major Depressive Disorder, Huntington’s
Disease (Chorea), and Myalgic Encephalomyelitis (Chronic Fatigue Syndrome), and in
Forensic Patients with Schizophrenia Who Have Seriously and Violently Offended’, Dr.
Puri et al. describe recent advances in the analysis of serial magnetic resonance struc-
tural cerebral scans and in the use of proton neurospectroscopy and 31-phosphorus
neurospectroscopy. The authors show how these technologies can be applied to further
our understanding of the role played by lipids in the pathophysiology of major neuro-
logic and psychiatric disorders, including major depressive disorder, Huntington’s dis-
ease (Huntington’s chorea), myalgic encephalomyelitis (chronic fatigue syndrome), and
schizophrenia and how these techniques may be employed to study the cerebral effects
of nutritional supplementation in these and related disorders.

Major discoveries have taken place on the function of neuroprotectin D1 (NPD1)
which is produced from DHA. Drs Niemoller et al. present the latest research on the
evidence. In their paper, ‘Omega–3 Fatty Acid Docosahexaenoic Acid Is the Precursor
of Neuroprotectin D1 in the Nervous System’, the authors first review the metabolism of
DHA in the nervous system. After ingestion, DHA is processed in the liver and trans-
ported by the bloodstream to the central nervous system. Once in the retina and brain,
it is incorporated into phospholipids in neuronal and photoreceptor membranes where
it promotes proper visual and neural activity. DHA is the precursor to NPD1, a potent
neuroprotective lipid-signaling molecule. NPD1 is synthesized in response to oxidative
stress, ischemia, and certain neurotrophins. NPD1 has been shown to activate protec-
tive anti-apoptotic Bcl-2 proteins including Bcl-2, Bcl-xL, and Bfl-1/A1 while inhibiting
pro-apoptotic proteins Bad, Bax, Bid, and Bix. NPD1 also actively inhibits interleukin-
1β (IL-1β) induction of cyclooxegenase-2 (COX-2) preventing initiation of the inflam-
matory cascade. Because of its potent protective activity, NPD1 is a promising candidate
to support cell survival/repair in retinal degenerative diseases and reduce damage
caused by brain inflammation in conditions such as stroke, Alzheimer disease (AD) and
epilepsy.

There is a great interest on the mechanisms by which DHA may have a beneficial
effect in patients with AD. Dr. Lukiw in his paper ‘Docosahexaenoic Acid and Amyloid-
β Peptide Signaling in Alzheimer’s Disease’ discusses the beneficial actions of free DHA
and NPD1. Significant molecular, genetic and epidemiological data support the idea
that β-amyloid precursor protein (β-APP)-derived peptide and cytokine-induced
oxidative stress, and the generation of reactive oxygen species, play important roles in
aging and in the development and progression of neurodegenerative disease. Dr. Lukin
discusses the role of β-APP, amyloid-β (Aβ) peptides, oxidative stress and apoptosis in
AD. While the degree to which brain inflammation plays a causative role in AD is con-
troversial, there is abundant evidence that pathogenic inflammatory signaling con-
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tributes significantly to the maintenance and progression of the AD process. DHA
reduces both apoptosis and oxidative stress. Dr. Lukiw points out that DHA suppresses
the expression of genes involved in inflammation. DHA through the production of
NPD1 and other DHA-derived neuroprotectins, provides additional benefits in patients
following trauma or stroke. While the interaction of cholesterol and statins with DHA
are just beginning to become understood, DHA supplementation in combination with
statin therapy demonstrates a significant enhancement in the reduction of serum cho-
lesterol than is observed with statin treatment alone. The fatty acid composition of neu-
ronal membranes, including DHA and cholesterol content, and cholesterol transporters
have direct bearing on whether β-APP is processed into neurotrophic or the more neu-
rotoxic species. Dr. Lukiw concludes: ‘The chronic nature of AD suggests that neuro-
protective and survival factors are progressively lost, switching from an up-regulation in
the expression of anti-apoptotic factors to increases in the expression of pro-apoptotic
members of the Bcl-2 gene family. Unlike the actions of excessive cholesterol, the neu-
roprotective DHA and DHA-derived NPD1 decrease the rate of Aβ peptide generation,
aggregation, and it’s shifting the balance from the expression of pro-apoptotic factors
toward the expression of anti-apoptotic, survival-promoting members of the Bcl-2 gene
family.’

Administration of the omega–3 fatty acid DHA to humans or experimental animals
can improve cognitive performance; the mechanisms underlying this effect remain
uncertain. In general, nutrients or drugs that modify brain function or behavior do so
by affecting synaptic transmission, changing the quantities of particular neurotransmit-
ters within synaptic clefts or acting directly on neurotransmitter receptors or down-
stream signal-transduction molecules.

The next paper, ‘Administration of Docosahexaenoic Acid, Uridine and Choline
Increases Levels of Synaptic Membranes and Dendritic Spines in Rodent Brain’, by Dr.
Wurtman et al. presents an extensive review of the biochemistry and metabolism of uri-
dine and choline since DHA’s effects on synaptic membrane to a great extent depend on
its interactions with brain uridine and choline. The authors found that DHA affects
synaptic transmission in mammalian brain: gerbils or rats receiving this fatty acid man-
ifest increased levels of phosphatides and specific pre- or post-synaptic proteins per
brain cell, and increased numbers of dendritic spines – a precursor of new synapses –
on brain neurons. These actions are markedly enhanced in animals which have also
received the other two circulating precursors of phosphatidylcholine – uridine (which
gives rise to brain UTP and CTP) and choline (which gives rise to phosphocholine).
These findings are reproduced also by eicosapentaenoic acid (EPA), but not by the
omega–6 fatty acid AA. Administration of the three compounds (DHA, uridine and
choline) also increases neurotransmitter release (acetylcholine; dopamine) and affects
animal behavior. Conceivably, this treatment might have some use in patients with
synaptic loss, e.g. secondary to neurodegenerative disease, or stroke, or brain injury.

Animal experiments and clinical intervention studies have shown that DHA is essen-
tial for learning, behavior and memory. How much DHA is needed for normal growth
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and development has been estimated from studies with breastfed infants and from clin-
ical intervention studies. Brain development begins shortly after conception. In
humans, the brain approaches adult mass within the first 2 years of life during which
time the foundation for the neural circuitry of the brain is established. Early access to an
adequate supply of substrates for neural development is a key requirement for prevent-
ing irreversible cognitive effects.

Hadley et al. in their paper ‘An Assessment of Dietary Docosahexaenoic Acid
Requirements for Brain Accretion and Turnover during Early Childhood’ carried out
an extensive review of the data in order to define the DHA requirement during the first
2 years of life by considering data for DHA accretion, concentration and turnover from
previously published studies, and prepared a general model for human brain DHA
homeostasis. The model is based on physiological demands of the brain rather than on
an estimate derived from the caloric contribution of α-linolenic acid (ALA, 18:3n–3).
An estimate for the dietary requirement of preformed DHA during early childhood
(1–2 years of age) is calculated to be 212 mg/day. This dietary requirement is calculated
to be sufficient to support total brain accretion of 3.75 mg/day of DHA.

In the next paper, ‘Variation in Lipid-Associated Genes as they Relate to Risk of
Advanced Age-Related Macular Degeneration’, Dr. SanGiovanni et al. present an exten-
sive review of the functions of both omega–6 and omega–3 long-chain polyunsaturated
fatty acids (LCPUFAs), focusing on the role of omega–3 LCPUFAs as factors impacting
metabolic processes and environmental exposures implicated in the pathogenesis of
AMD. These processes and exposures include neovasucularization, oxidative stress,
hemodynamic and hydrodynamic change, and factors affecting cellular survival.
Molecules operating with in complex systems to impact AMD pathogenesis include
eicosanoids, angiogenic growth factors, matrix metalloproteinases, reactive oxygen
species, cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory
and immunoregulatory cytokines, and inflammatory phospholipids. The balance and
composition of dietary and retinal omega–3 and omega–6 LCPUFAs may affect sub-
strates, availability of biosynthetic enzymes, and gene expression of these molecules;
LCPUFAs also act as ligands to a number of transcription factors and serve as precur-
sors to potent cyclooxygenase-, lipoxygenase-, cytochrome P450-derived autocoids that
influence vascular sufficiency, cell cycle, and cell survival. In the context of this evidence
base, and that on the molecular genetics of AMD, Dr. SanGiovanni and colleagues
applied resources from a genome-wide scan to examine the relationship of AMD with
polymorphisms in sets of genes encoding enzymes, structural elements, and transcrip-
tion factors affecting and affected by LCPUFAs and other lipid-based compounds, their
precursors, cleavage and biosynthetic enzymes, and metabolites. Their results suggest
that variants in genes encoding elements of phosphatidylinositol-based signaling sys-
tems are jointly related to a 99-fold increased risk of advanced AMD (odds ratio 99.2,
95% confidence interval 22.3–440.9, p ≤ 1.0 × 10–17). This is the first application of joint
action models to investigate molecular genetics of AMD related to pathways and gene
sets. The pattern of the results suggests that: (1) the phosphatidylinositol signaling sys-
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tem may be acting through pleckstrin homology domains to activate a number of pro-
tein kinases, G-protein-based signaling cascades, and phospholipases with potential to
impact health and disease of the neural and vascular retina; (2) there is a reasonable
basis to investigate the relationship of genetic variants in the inositol pathway and the
role of Akt/PI3K and dietary LCPUFAs in calcium homeostasis implicated in retinal
disease. Deep sequencing of inositol gene sets in clinical populations and mechanistic
studies in model systems may yield useful information on strategies for primary and
tertiary prevention of sight-threatening AMD.

This volume on Omega–3 Fatty Acids, the Brain and Retina consists of papers writ-
ten by the scientists that have contributed immensely to the field on the role of omega–3
fatty acids in maintaining homeostasis and in the prevention and management of neu-
rodegenerative diseases due to the aging process or genetic predisposition. The new
studies on the DHA as a precursor of resolvins and protectins is a very exciting area that
should continue to advance our knowledge of EPA + DHA in the brain and retina.
Therefore, this volume should be of interest to psychologists, physiologists, neuroscien-
tists, psychiatrists, ophthalmologists, geneticists, neurologists, pediatricians, obstetri-
cians, geriatricians, and other physicians, as well as nutritionists, dieticians, and
policymakers.

Artemis P. Simopoulos, Washington, D.C. 
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Omega–6/Omega–3 Essential Fatty Acids: 
Biological Effects
Artemis P. Simopoulos

The Center for Genetics, Nutrition and Health, Washington D.C., USA

The interaction of genetics and environment, nature, and nurture is the foundation 

for all health and disease. In the last two decades, using the techniques of molecu-

lar biology, it has been shown that genetic factors determine susceptibility to disease 

and environmental factors determine which genetically susceptible individuals will 

be affected [1–6]. Nutrition is an environmental factor of major importance. Using 

the tools of molecular biology and genetics, research is defining the mechanisms by 

which genes influence nutrient absorption, metabolism and excretion, taste percep-

tion, and degree of satiation, and the mechanisms by which nutrients influence gene 

expression. Whereas major changes have taken place in our diet over the past 10,000 

years since the beginning of the Agricultural Revolution, our genes have not changed. 

The spontaneous mutation rate for nuclear DNA is estimated at 0.5% per million 

years. Therefore, over the past 10,000 years there has been time for very little change 

in our genes, perhaps 0.005%. In fact, our genes today are very similar to the genes 

of our ancestors during the Paleolithic period 40,000 years ago, at which time our 

genetic profile was established [7]. Humans today live in a nutritional environment 

that differs from that for which our genetic constitution was selected. Studies on the 

evolutionary aspects of diet indicate that major changes have taken place in our diet, 

particularly in the type and amount of essential fatty acids (EFA) and in the antioxi-

dant content of foods [7–11] (fig. 1).

Today, industrialized societies are characterized by (1) an increase in energy intake 

and decrease in energy expenditure; (2) an increase in saturated fat, omega–6 fatty 

acids and trans fatty acids, and a decrease in omega–3 fatty acid intake; (3) a decrease 

in complex carbohydrates and fiber; (4) an increase in cereal grains and a decrease in 

fruits and vegetables, and (5) a decrease in protein, antioxidants and calcium intake 

[7, 9, 12–16] (tables 1, 2). The increase in trans fatty acids is detrimental to health as 

shown in table 3 [17]. In addition, trans fatty acids interfere with the desaturation 

and elongation of both omega–6 and omega–3 fatty acids, thus further decreasing the 
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amount of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA) availability for human metabolism [18].

The beneficial health effects of omega–3 fatty acids, EPA and DHA were described 

first in the Greenland Eskimos who consumed a high seafood diet and had low rates 

of coronary heart disease, asthma, type 1 diabetes mellitus, and multiple sclerosis. 

Since that observation, the beneficial health effects of omega–3 fatty acids have been 

extended to include benefits related to cancer, inflammatory bowel disease, rheuma-

toid arthritis, and psoriasis [19], as well as depression and other mental illnesses [20–

22]. A balanced intake of omega–6 and omega–3 fatty acids is needed for homeostasis 

and normal development throughout the life cycle.

Imbalance of Omega–6/Omega–3

Food technology and agribusiness provided the economic stimulus that dominated 

the changes in the food supply [23, 24]. From per capita quantities of foods avail-

able for consumption in the US national food supply in 1985, the amount of EPA 

is reported to be about 50 mg per capita/day and the amount of DHA is 80 mg per 

capita/day. The two main sources are fish and poultry [25]. It has been estimated that 

the present Western diet is ‘deficient’ in omega–3 fatty acids with a ratio of omega–6 
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Fig. 1. Hypothetical scheme of fat, fatty acid (ω–6, ω–3, trans and total) intake (as percent of calories 

from fat) and intake of vitamins E and C (mg/day). Data were extrapolated from cross-sectional anal-

yses of contemporary hunter-gatherer populations and from longitudinal observations and their 

putative changes during the preceding 100 years [9].
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Table 1. Estimated omega–3 and omega–6 fatty acid intake in 

the late Paleolithic period (g/day)1,2

Plants  

 LA  4.28

 ALA 11.40

Animals

 LA  4.56

 ALA  1.21

Total

 LA  8.84

 ALA 12.60

Animals

 AA (ω–6)  1.81

 EPA (ω–3)  0.39

 DTA (ω–6)  0.12

 DPA (ω–3)  0.42

 DHA (ω–3)  0.27

Ratios of ω–6/ω–3

 LA/ALA  0.70

 AA+DTA/EPA+DPA+DHA  1.79

 Total ω–6/ω–3  0.79b

LA = Linoleic acid; ALA = linolenic acid; AA = arachidonic acid; 
EPA = eicosapentaenoic acid; DTA = docosatetranoic acid; DPA = 
docosapentaenoic acid; DHA = docosahexaenoic acid.
1Data from Eaton et al. [13]. 
2Assuming an energy intake of 35:65 of animal:plant sources.

Table 2. Late Paleolithic and currently recommended nutrient composition for Americans

Late Paleolithic Current recommendations

Total dietary energy, %   

 Protein 33 12

 Carbohydrate 46 58

 Fat 21 30

 Alcohol ~0 –

P/S ratio 1.41 1.00

Cholesterol, mg 520 300

Fiber, g 100–150 30–60

Sodium, mg 690 1,100–3,300

Calcium, mg 1,500–2,000 800–1,600

Ascorbic acid, mg 440 60

Modified from Eaton et al. [13]. P/S = Polyunsaturated to saturated fat.
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to omega–3 of 15–20/1, instead of 1/1 as is the case with wild animals and presumably 

human beings [7–11, 13, 26–28] (table 4). 

An absolute and relative change of omega–6/omega–3 in the food supply of 

Western societies has occurred over the last 150 years. A balance existed between 

omega–6 and omega–3 for millions of years during the long evolutionary history of 

the genus Homo, and genetic changes occurred partly in response to these dietary 

influences. During evolution, omega–3 fatty acids were found in all foods consumed: 

meat, wild plants, eggs, fish, nuts and berries [29–38]. Studies by Cordain et al. [39] 

on wild animals confirm the original observations of Crawford [27] and Sinclair et 

al. [40]. However, rapid dietary changes over short periods of time as have occurred 

over the past 100–150 years is a totally new phenomenon in human evolution [13, 15, 

41–43] (table 5).

Table 3.  Adverse effects of trans fatty acids [modified from 17]

Decrease or inhibit

Decrease or inhibit incorporation of other fatty acids into cell membranes

Decrease high-density lipoprotein (HDL)

Inhibit Δ–6 desaturase (interfere with elongation and desaturation of essential fatty acids)

Decrease serum testosterone (in male rats)

Cross the placenta and decrease birth weight (in humans)

Increase

Low-density lipoprotein (LDL)

Platelet aggregation

Lipoprotein (a) [Lp(a)]

Body weight

Cholesterol transfer protein (CTP)

Abnormal morphology of sperm (in male rats)

Table 4. Ratios of dietary omega–6:omega–3 fatty acids in the late Paleolithic 

period and in current Western diets (USA) (g/day)

Paleolithic Western

LA : ALA 0.70 18.75

AA + DTA : EPA + DPA + DHA 1.79  3.33

Total 0.79 16.74

LA = Linoleic acid; ALA = linolenic acid; AA = arachidonic acid; EPA = eicosapen-

taenoic acid; DTA = docosatetranoic acid; DPA = docosapentaenoic acid; DHA = 

docosahexaenoic acid. 

Reprinted with permission from reference 15.
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Biological Effects and the Omega–6/Omega–3 Ratio

There are two classes of EFA – omega–6 and omega–3. The distinction between 

omega–6 and omega–3 fatty acids is based on the location of the first double bond, 

counting from the methyl end of the fatty acid molecule. In the omega–6 fatty 

acids, the first double bond is between the 6th and 7th carbon atoms and for the 

omega–3 fatty acids the first double bond is between the 3rd and 4th carbon atoms. 

Monounsaturates are represented by oleic acid, an omega–9 fatty acid, which can be 

synthesized by all mammals including humans. Its double bond is between the 9th 

and 10th carbon atoms.

Omega–6 and omega–3 fatty acids are essential because humans, like all mam-

mals, cannot make them and must obtain them in their diet. Omega–6 fatty acids are 

represented by linoleic acid (LA; 18:2ω–6) and omega–3 fatty acids by α-linolenic 

acid (ALA; 18:3ω–3). LA is plentiful in nature and is found in the seeds of most plants 

except for coconut, cocoa, and palm. ALA on the other hand is found in the chloro-

plasts of green leafy vegetables, and in the seeds of flax, rape, chia, perilla and in wal-

nuts. Both EFA are metabolized to longer-chain fatty acids of 20 and 22 carbon atoms. 

LA is metabolized to AA (20:4ω–6), and LNA to EPA (20:5ω–3) and DHA (22:6ω–3), 

increasing the chain length and degree of unsaturation by adding extra double bonds 

to the carboxyl end of the fatty acid molecule (fig. 2).

Humans and other mammals, except for carnivores such as lions, can convert LA 

to AA and ALA to EPA and DHA, but it is slow [44]. This conversion was shown by 

using deuterated ALA [45]. There is competition between omega–6 and omega–3 

fatty acids for the desaturation enzymes. However, both delta–4 and delta–6 desatu-

rases prefer omega–3 to omega–6 fatty acids [44, 46, 47]. But, a high LA intake inter-

feres with the desaturation and elongation of ALA [45, 48]. Trans fatty acids interfere 

with the desaturation and elongation of both LA and ALA. Delta–6 desaturase is the 

limiting enzyme and there is some evidence that it decreases with age [44]. Premature 

infants [49], hypertensive individuals [50], and some diabetics [51] are limited in their 

ability to make EPA and DHA from ALA. These findings are important and need to 

Table 5. Omega–6:omega–3 ratios in various populations

Population ω–6/ω–3 Ref.

Paleolithic 0.79 13

Greece prior to 1960 1.00–2.00 15

Current Japan 4.00 41

Current India, rural 5–6.1 42

Current UK and Northern Europe 15.00 43

Current USA 16.74 13

Current India, urban 38–50 42
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be considered when making dietary recommendations. EPA and DHA are found in 

the oils of fish, particularly fatty fish. AA is found predominantly in the phospholip-

ids of grain-fed animals and eggs.

LA, ALA, and their long-chain derivatives are important components of animal 

and plant cell membranes. In mammals and birds, the omega-3 fatty acids are dis-

tributed selectively among lipid classes. ALA is found in triglycerides, in cholesteryl 

esters, and in very small amounts in phospholipids. EPA is found in cholesteryl esters, 

triglycerides, and phospholipids. DHA is found mostly in phospholipids. In mam-

mals, including humans, the cerebral cortex, retina, and testis and sperm are par-

ticularly rich in DHA. DHA is one of the most abundant components of the brain’s 

structural lipids. DHA, like EPA, can be derived only from direct ingestion or by syn-

thesis from dietary EPA or ALA.

Mammalian cells cannot convert omega–6 to omega–3 fatty acids because they lack 

the converting enzyme, delta–3 desaturase. LA, the parent omega–6 fatty acid, and 
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docosapentaenoic acid

C24:5n–6

C24:4n–6

C22:4n–6
docosatetraenoic acid

C20:4n–6
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C20:3n–6
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Fig. 2. Elongation and desaturation of omega–6 and omega–3 PUFAs.
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ALA, the parent omega–3 fatty acid, and their long-chain derivatives are important 

components of animal and plant cell membranes (fig. 2). These two classes of EFA 

are not interconvertible, are metabolically and functionally distinct, and often have 

important opposing physiological functions. When humans ingest fish or fish oil, the 

EPA and DHA from the diet partially replace the omega–6 fatty acids, especially AA, 

in the membranes of probably all cells, but especially in the membranes of platelets, 

erythrocytes, neutrophils, monocytes, and liver cells [reviewed in 8, 52]. Whereas cel-

lular proteins are genetically determined, the polyunsaturated fatty acid (PUFA) com-

position of cell membranes is to a great extent dependent on the dietary intake. AA 

and EPA are the parent compounds for eicosanoid production [8] (tables 6, 7; fig. 3).

Because of the increased amounts of omega–6 fatty acids in the Western diet, the 

eicosanoid metabolic products from AA, specifically prostaglandins, thromboxanes, 

leukotrienes, hydroxy fatty acids, and lipoxins, are formed in larger quantities than 

those formed from omega–3 fatty acids, specifically EPA [8]. The eicosanoids from 

AA are biologically active in very small quantities and, if they are formed in large 

amounts, they contribute to the formation of thrombus and atheromas; to allergic and 

inflammatory disorders, particularly in susceptible people, and to proliferation of cells. 

Thus, a diet rich in omega–6 fatty acids shifts the physiological state to one that is 

prothrombotic and proaggregatory, with increases in blood viscosity, vasospasm, and 

vasoconstriction and decreases in bleeding time. Bleeding time is decreased in groups 

of patients with hypercholesterolemia, hyperlipoproteinemia, myocardial infarction, 

other forms of atherosclerotic disease, and diabetes (obesity and hypertriglyceridemia). 

Bleeding time is longer in women than in men and longer in young than in old people. 

There are ethnic differences in bleeding time that appear to be related to diet.

Newly Identified Lipid Mediators: Lipoxins, Resolvins and Protectins

Recent studies have shown that additional lipid mediators are produced from AA, 

EPA and DHA with potent anti-inflammatory properties [53]. Lipoxins are derived 

Table 6. Effects of ingestion of EPA and DHA from fish or fish oil

• Decreased production of prostaglandin E2 (PGE2) metabolites

• A decrease in thromboxane A2, a potent platelet aggregator and vasoconstrictor

•  A decrease in leukotriene B4 formation, an inducer of inflammation, and a powerful inducer of 

leukocyte chemotaxis and adherence

• An increase in thromboxane A3, a weak platelet aggregator and weak vasoconstrictor

•  An increase in prostacyclin PGI3, leading to an overall increase in total prostacyclin by increasing 

PGI3 without a decrease in PGI2, both PGI2 and PGI3 are active vasodilators and inhibitors of 

platelet aggregation

• An increase in leukotriene B5, a weak inducer of inflammation and a weak chemotactic agent
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Table 7. Effects of omega–3 fatty acids on factors involved in the pathophysiology of atherosclero-

sis and inflammation

Factor Function Effect of ω– 3 
fatty acid

Arachidonic acid Eicosanoid precursor; aggregates platelets; stimulates
 white blood cells

↓

Thromboxane A2 Platelet aggregation; vasoconstriction; increase of
 intracellular Ca2+

↓

Prostacyclin (PGI2/3) Prevent platelet aggregation; vasodilation; increase 
  cAMP

↑

Leukotriene (LTB4) Neutrophil chemoattractant; increase of intracellular
 Ca2+

↓

Fibrinogen A member of the acute phase response and a blood
 clotting factor

↓

Tissue plasminogen
  activator

Increase endogenous fibrinolysis ↑

Platelet-activating
 factor (PAF)

Activates platelets and white blood cells ↓

Platelet-derived
  growth factor 

(PDGF)

Chemoattractant and mitogen for smooth muscles
 and macrophages

↓

Oxygen free radicals Cellular damage; enhance LDL uptake via scavenger
 pathway; stimulate arachidonic acid metabolism

↓

Lipid
 hydroperoxides

Stimulate eicosanoid formation ↓

Interleukin-1 and
  tumor necrosis 

factor

Stimulate neutrophil O2 free radical formation;
  stimulate lymphocyte proliferation; stimulate PAF; 

express intercellular adhesion molecule-1 on 
endothelial cells; inhibit plasminogen activator, 
thus, procoagulants

↓

Interleukin-6 Stimulates the synthesis of all acute phase proteins
  involved in the inflammatory response: C-reactive 

protein; serum amyloid A; fibrinogen; 
α1-chymotrypsin, and haptoglobin

↓

C-reactive protein
 (CRP)

An acute phase reactant and an independent risk
  factor for cardiovascular disease

↓

Endothelial-derived
 relaxation factor

Reduces arterial vasoconstrictor response ↑

Insulin function  Increases sensitivity
 to insulin

VLDL Related to LDL and HDL level ↓

HDL Decreases the risk for coronary heart disease ↑

Lp(a) Lipoprotein(a) is a genetically determined protein
 that has atherogenic and thrombogenic properties

↓

Triglycerides and
 chylomicrons

Contribute to postprandial lipemia ↓
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from AA as a result of cell-cell interaction and the sequential transformation by dif-

ferent lipoxygenases. Leukocyte 5-lipoxygenase generates LT4 from AA, which is 

then transformed to the lipoxin LXA4 in platelets by the oxidase activity of their 

12-lipoxygenase. In addition to their anti-inflammatory properties, lipoxins have 

potent pro-resolution properties, inhibit the formation of inflammatory cytokines, 

immune cell proliferation and migration. In the presence of aspirin, the acetylation 

of cyclooxygenase-2 enables it to act as a lipoxygenase forming the lipoxin precur-

sor 15-hydroxyeicosatetraenoic acid from AA, which is then transformed by leuko-

cyte 5-lipoxygenase to 15-epi-LXA4 or 15-epi-LXB4 referred to as aspirin-triggered 

lipoxins. These aspirin-triggered lipoxins seem to be more potent anti-inflammatory 

agents than the conventional LX4 [54].

In analogy to the aspirin-triggered lipoxins from AA, bioactive mediators are 

also produced from EPA + DHA. Serhan and his group [53] used lipidomics and 
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Prostacyclin

Endoperoxides

Tissue phospholipids
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5-Lipoxygenase
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PGI3PGI2

PGE3
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Leukotrienes
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5-HPETE 5-HPEPE

Thromboxane

Prostacyclin

Fig. 3. Oxidative metabolism of AA and EPA by the cyclooxygenase and 5-lipoxygenase pathways. 

5-HPETE = 5-Hydroperoxyeicosatetranoic acid, 5-HPEPE = 5-hydroxyeicosapentaenoic acid.
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informatics in studies on EPA and DHA metabolites in the resolution of inflamma-

tion which are called resolvins. The resolvin from EPA is RvE1. RvE1 inhibits nuclear 

factor κB by tumor necrosis factor-α (TNF-α). ChemR23 is the receptor for RvE1 

and it is a specific G-protein-coupled receptor. Transcription of ChemR23 is found in 

cardiovascular, gastrointestinal renal, brain, and myeloid tissue. The ChemR23 shares 

homology with the receptor identified for the AA-derived aspirin-triggered lipoxins 

but is molecularly distinct.

Resolvins are derived from EPA and DHA with two chemically unique structural 

forms, the E-series and the D-series respectively. Resolvin E1 is produced in healthy 

individuals and is increased in the plasma of individuals taking aspirin and or EPA.

DHA is the substrate for two groups of resolvins produced by different biosyn-

thetic routes, referred to as the 17S- and 17RD-series resolvins during the resolution 

of inflammatory exudates. D-series resolvins have potent anti-inflammatory actions 

and are particularly interesting because the brain, synapses and retina are highly 

enriched in DHA. The D-series resolvins are of interest in the control of inflamma-

tion resolution in host defense and in neural tissues.

Another class of lipid mediators produced from DHA are the 10,17S-docosatriene, 

now known as protectins. When produced by neural tissues is termed neuroprotectin 

D1 because of its biosynthetic origin. Protectin D1 blocks T-cell migration in vivo, 

reduces TNF and interferon-γ (IFN-γ) secretion and promotes T-cell apoptosis.

Resolvin E1 and protectin D1 derived from EPA + DHA respectively are potent 

resolution agonists that activate cell type, neutrophils, macrophages, and epithelial 

cells to accelerate resolution.

Lipoxins, resolvins and protectins have potent multilevel mechanisms of action in 

disease models and promote resolution in animal models of oral, lung, ocular, kidney, 

skin and gastrointestinal inflammation, as well as in ischemia-reperfusion injury and 

angiogenesis.

Lipoxins, resolvin E1 and protectins act on T cells, dendritic cells and phagocytic 

cells, therefore they represent a link between the innate and the immune system. 

Considering that lipoxins, resolvin E1, and protectins are produced from AA, EPA 

+ DHA, it follows that these fatty acids represent a molecular link between the two 

systems.

Inflammation is at the base of many chronic diseases such as cardiovascular dis-

ease, obesity, diabetes, arthritis, mental illnesses and cancer, as well as many autoim-

mune diseases. These diseases are characterized by increased amounts of IL-1 and 

IL-6. Increased dietary intake of omega–6 fatty acids is associated with higher levels 

of TXA2 and LTB4. LTB4 is a proinflammatory AA metabolite that along with IL-1 and 

IL-6 contributes to inflammation. The discovery of the newly identified mediators 

lipoxins, resolvins, protectins and neuroprotectins form AA (lipoxins) EPA (resolvins) 

and DHA (protectins and neuroprotectins) indicate that the resolution of inflamma-

tion is not just a passive termination of inflammation, but rather an active biochemi-

cal and metabolic process. These families of endogenous pro-resolution molecules 
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are not immunosuppressive but instead function in the resolution of inflammation by 

activating specific mechanisms to promote homeostasis [54].

The Balance of Omega–6/Omega–3 Fatty Acids Is Important for Health: Evidence 

from Gene Transfer Studies

Further support for the need to balance the omega–6/omega–3 EFA comes from the 

studies of Kang et al. [55, 56], which clearly show the ability of both normal rat car-

diomyocytes and human breast cancer cells in culture to form all the omega–3s from 

omega–6 fatty acids when fed the cDNA encoding omega–3 fatty acid desaturase 

obtained from the roundworm Caenorhabditis elegans. The omega–3 desaturase effi-

ciently and quickly converted the omega–6 fatty acids that were fed to the cardiomyo-

cytes in culture to the corresponding omega–3 fatty acids. Thus, omega–6 LA was 

converted to omega–3 ALA and AA was converted to EPA, so that at equilibrium, the 

ratio of omega–6 to omega–3 PUFA was close to 1/1. Further studies demonstrated 

that the cancer cells expressing the omega–3 desaturase underwent apoptotic death 

whereas the control cancer cells with a high omega–6/omega–3 ratio continued to 

proliferate [57]. More recently, Kang et al. [58–60] showed that transgenic mice and 

pigs expressing the C. elegans fat-1 gene encoding an omega–3 fatty acid desaturase 

are capable of producing omega–3 from omega–6 fatty acids, leading to enrichment 

of omega–3 fatty acids with reduced levels of omega–6 fatty acids in almost all organs 

and tissues, including muscles and milk, with no need of dietary omega–3 fatty acid 

supply. This discovery provides a unique tool and new opportunities for omega–3 

research, and raises the potential of production of fat-1 transgenic livestock as a 

new and ideal source of omega–3 fatty acids to meet the human nutritional needs. 

Furthermore, the transgenic mouse model is being used widely by scientists for the 

study of chronic diseases and for the study of mechanisms of the beneficial effects of 

omega–3 fatty acids [61]. The fat-1 transgenic mice produce and store higher levels 

of EPA + DHA in their tissues than wild-type mice, and as a result generate increased 

levels of resolvins and protectins.

Omega–3 Fatty Acids and Gene Expression

Previous studies have shown that fatty acids released from membrane phospholipids 

by cellular phospholipases, or made available to the cell from the diet or other aspects 

of the extracellular environment, are important cell signaling molecules. They can act 

as second messengers or substitute for the classical second messengers of the inosit-

ide phospholipid and the cyclic AMP signal transduction pathways. They can also 

act as modulator molecules mediating responses of the cell to extracellular signals. 

Recently it has been shown that fatty acids rapidly and directly alter the transcription 
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of specific genes [62]. In the case of genes involved in inflammation, such as IL-1β, 

EPA and DHA suppress IL-1β mRNA whereas AA does not, and the same effect 

appears in studies on growth-related early response gene expression and growth fac-

tor [62]. In the case of vascular cell adhesion molecule (VCAM), AA has a modest 

suppressing effect relative to DHA. The latter situation may explain the protective 

effect of fish oil toward colonic carcinogenesis, since EPA and DHA did not stimulate 

protein kinase C. PUFA regulation of gene expression extends beyond the liver and 

includes genes such as adipocyte glucose transporter-4, lymphocyte stearoyl-CoA 

desaturase-2 in the brain, peripheral monocytes (IL-1β and VCAM-1) and platelets 

[platelet-derived growth factor (PDGF)]. Whereas some of the transcriptional effects 

of PUFA appear to be mediated by eicosanoids, the PUFA suppression of lipogenic 

and glycolytic genes is independent of eicosanoid synthesis, and appears to involve a 

nuclear mechanism directly modified by PUFA.

Mental Health and Eye Disease

Psychologic stress in humans induces the production of proinflammatory cytokines 

such as IFN-γ, TNF-α, IL-6 and IL-1. An imbalance of omega–6 and omega–3 PUFA in 

the peripheral blood causes an overproduction of proinflammatory cytokines. There 

is evidence that changes in fatty acid composition are involved in the pathophysi-

ology of major depression [63]. Changes in serotonin (5-HT) receptor number and 

function caused by changes in PUFA provide the theoretical rationale connecting 

fatty acids with the current receptor and neurotransmitter theories of depression 

[64–68]. The increased C20:4ω–6/C20:5ω–3 ratio and the imbalance in the omega–6/

omega–3 PUFA ratio in major depression may be related to the increased production 

of proinflammatory cytokines and eicosanoids in that illness [66]. There are a num-

ber of studies evaluating the therapeutic effect of EPA and DHA in major depression. 

Stoll and colleagues [69, 70] have shown that EPA and DHA prolong remission, that 

is, reduce the risk of relapse in patients with bipolar disorder.

Kiecolt-Glaser et al. [71] studied depressive symptoms, omega–6/omega–3 fatty 

acid ratio and inflammation in older adults. As the dietary ratio of omega–6/omega–3 

increased, the depressive symptoms, TNF-α, IL-6, and IL-6 soluble receptor (sIL-6r) 

increased. The authors concluded that diets with a high omega–6/omega–3 ratio may 

enhance the risk for both depression and inflammatory diseases.

Dry eye syndrome (DES) is one of the most prevalent conditions. Inflammation 

of the lacrimal gland, the meibomian gland, and the ocular surface plays a signifi-

cant role in DES [72, 73]. An increased concentration of inflammatory cytokines, 

such as IL-1, IL-6, and TNF-α, has been found in tear film in patients with DES [74]. 

Miljanovic et al. [75] investigated the relation of dietary intake of omega–3 fatty 

acids and the ratio of omega–6 to omega–3 with DES incidence in a large population 

of women participating in the Women’s Health Study. A higher ratio of omega–6/
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omega–3 consumption was associated with a significantly increased risk of DES (OR 

2.51; 95% CI 1.13, 5.58) for >15:1 vs. <4.1 (p for trend = 0.01). These results sug-

gest that a higher dietary intake of omega–3 fatty acids is associated with a decreased 

incidence of DES in women and a high omega–6/omega–3 ratio is associated with a 

greater risk.

Age-related macular degeneration (AMD) is the leading cause of vision loss among 

people 65 and older. Both AMD and cardiovascular disease share similar modifiable 

factors [76–80]. Fish intake has been reported to have protective properties in lower-

ing the risk of AMD [81, 85], especially when LA intake was low [81, 82]. In a study 

involving twins, Seddon et al. [86] showed that fish consumption and omega–3 fatty 

acid intake reduce the risk of AMD whereas cigarette smoking increases the risk for 

AMD. 

Conclusions and Recommendations

Western diets are characterized by high omega–6 and low omega–3 fatty acid intake, 

whereas during the Paleolithic period when human’s genetic profile was established, 

there was a balance between omega–6 and omega–3 fatty acids. Therefore, humans 

today live in a nutritional environment that differs from that for which our genetic 

constitution was selected.

Both omega–6 and omega–3 fatty acids influence gene expression. The balance of 

omega–6/omega–3 fatty acids is an important determinant in maintaining homeosta-

sis, normal development, and mental health throughout the life cycle.

The new lipid mediators from AA, EPA + DHA such as lipoxins, resolvins, and 

protectins are potent pro-resolution and anti-inflammatory agents and appear to 

be the molecular link between the innate and adaptive immune systems, indicating 

the importance of nutrition in maintaining homeostasis and the need to decrease 

omega–6 fatty acid intake while increasing omega–3 fatty acid intake.
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Background

Optimal brain function requires the ready availability of brain critical nutrients, 

especially during periods of extreme stress. Deficiencies of brain-specific nutrients, 

in addition to inadequate calories, may not only substantially contribute to subopti-

mal cognition and alertness, but may manifest as severe psychiatric disorders includ-

ing adjustment disorders, major depression, impulsive violence and suicide. The 

mammalian brain is primarily composed of fats and lipids, usually 60% wet weight. 

Approximately 30% of fatty acid pool cannot be made de novo and must be obtained 

through the diet and are thus termed essential fatty acids. Seafood, fish oils and forti-

fied foods are rich sources of the long-chain ω–3 fatty acids (ω–3 LCFAs: eicosap-

entaenoic (EPA), docosapentaenoic (DPAω–3), and docosahexaenoic acids (DHA)). 

DHA is selectively concentrated in neuronal membranes comprising 14% of total 

fatty acids. Plausible biological mechanisms linking dietary deficiencies of ω–3 LCFAs 

with psychiatric illness include: depletion of serotonin and dopamine levels by 50% in 

animal models [1], impaired neuronal migration, connectivity, timed apoptosis, and 

dendritic arborization, such that there is an irreversible disruption in the neuronal 

pathways that regulate behavior [2] neuroinflammatory processes and dysregulation 

of the hypothalamic pituitary adrenal axis [3].

This work does not represent any policy or position of the National Institutes of Health and is solely the 

scientific opinion of the author.
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Defining Deficiency

The absence of signs of deficiency related to critical target tissues has been consid-

ered in formulation of required dietary intakes. DHA is selectively concentrated in 

synaptic neuronal membranes and, comprises nearly 14% of all brain fatty acids and 

is necessary for optimal neurological function [4]. Thus, deficit intakes of DHA or 

ω–3 LCFAs supporting DHA are likely to manifest as signs or symptoms of neu-

ral dysfunction including neurodevelopmental and neuropsychiatric impairments. 

Neurodevelopmental impairments are identified as signs and symptoms of deficiency 

in setting the dietary reference intakes (DRIs) [5] for biotin, folate, iodine and iron. 

Psychiatric and neurocognitive impairments are also identified as signs and symp-

toms of deficiency in setting the DRIs [5] for vitamin B6; depression and confusion, 

vitamin B12; mood changes, confusion, insomnia and cognitive impairments, biotin; 

depression, lethargy and hallucinations, folate; irritability and difficulty concentrat-

ing, niacin; depression and apathy, pantothenic acid; irritability, restlessness, apathy 

and malaise, thiamin; apathy, irritability, confusion decreased short-term memory, 

iodine; hypothyroidism and learning impairments and iron; impaired cognition 

and decreased work capacity. Severe symptoms of major depression may be used as 

a categorical diagnosis and can potentially be used to calculate an estimated aver-

age requirement. Major depression is commonly a chronic degenerative disease. 

Neurodevelopmental and neuropsychiatric impairments are clearly identified by the 

Food and Nutrition Board as signs and symptoms of deficiencies for several nutrients 

[5], thus setting a precedent potentially applicable to ω–3 LCFA’s deficiencies in simi-

lar outcome parameters.

The viewpoints of Sir Austin Bradford Hill [6] are routinely evaluated in assessing 

the strength of the body of epidemiological and other evidence for possible relation-

ships to causality. We posit that DHA and ω–3 LCFA deficiencies are causally related to 

an increase risk of psychiatric disorders, specifically major depression. Evidence link-

ing deficiencies in ω–3 LCFAs in psychiatric disorders has recently been reviewed in 

a UK Parliamentary Inquiry Report on Nutrients and Mental Health [7] and by the 

American Psychiatric Association in the treatment recommendations issued for ω–3 

LCFAs in psychiatric patients [8]. Both find consistent data across ecological cross-

national studies, epidemiological studies, case-control comparisons of blood and brain 

tissues, in double-blind randomized placebo-controlled trials and meta-analyses of 

these trials, that low fish consumption or low ω–3 body compositional status increases 

risk of depression and other affective illnesses. Here we assess in detail ecological, 

epidemiological dietary intake data, blood and tissue composition data and random-

ized clinical intervention trials for evidence of causal links between low intakes of ω–3 

fatty acid and risk of significant depressive symptoms. Data linking low intakes of ω–3 

LCFAs to risk of suicide or suicidal ideation is beginning to emerge and shows great 

promise.
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Hill ‘Criteria’

Strength

The ecological and epidemiological associations between low seafood and ω–3 LCFA 

intake are strong. Ecological studies indicate that in comparison to countries with the 

highest consumption, low seafood consumption is associated with a 65-fold higher 

risk for lifetime prevalence of major depression (r = –0.84, p < 0.0001) [9], a 50-fold 

higher risk for postnatal depression (r = –0.81, p < 0.0001) [10], a 30-fold higher risk 

for bipolar spectrum disorder (r = –0.80, p < 0.0003) [11], and a 10-fold higher risk of 

death from homicide mortality (r = –0.63, p < 0.0006) [12]. Correlation coefficients 

in these ranges are considered to be strong.

Consistency

‘Consistent findings observed by different persons in different places with different 

samples strengthen the likelihood of an effect’ [6]. We find a relationship of low ω–3 

LCFA status and greater risk of affective illnesses to be consistent across ecological 

studies, epidemiological studies, case-control studies and biological tissue sample 

studies. In particular, epidemiological studies have reported strong associations 

between low seafood intake and greater risk of depression with a high degree of 

consistency. Among 1,767 subjects in Northern Finland, Tanskanen et al. [13] found 

that both the risk of being depressed (odds ratio (OR) 0.63; 95% confidence interval 

(CI) 0.43–0.94; p = 0.02) and the risk of having suicidal ideation (OR 0.57; 95% CI 

0.35–0.95; p = 0.03) were significantly lower among frequent lake-fish consumers 

compared with more infrequent consumers. In a birth cohort of 5,689 Finnish sub-

jects, the risk of depression was 2.6-fold (95% CI 1.4–5.1) greater and risk of suicidal 

thinking was 1.5-fold (95% CI 1.0–3.0) greater comparing females with rare fish con-

sumption to regular consumers [14]. Finnish fishermen (n = 6,410) consume twice 

as much fish but have a lower risk of mortality from alcohol-related diseases (OR 

0.59; 95% CI 0.41–0.82) and suicides (OR 0.61; 95% CI 0.39–0.91) compared to the 

general population, after adjustment [15]. In contrast, Hakkarainen et al. [16] found 

no associations between the dietary intake of ω–3 fatty acids or fish consumption 

and self-report of depressed mood, hospitalization for a major depressive episode, 

or suicide among 29,133 Finnish men. However, there was a high covariance with 

fish and ω–6 linoleate consumption, which was 20-fold higher than ω–3 LCFA from 

fish [17]. Thus, it is difficult to determine which factor was specifically associated 

with an increased risk of depression. Among 21,835 Norwegians, users of cod liver 

oil were significantly less likely to have depressive symptoms than non-users after 

adjusting for multiple possible confounding factors (OR 0.71; 95% CI 0.52–0.97) 

[18]. In a longitudinal follow-up study of 13,017 French subjects, subjects consum-

ing fatty fish, or having an ω–3 LCFA intake >1 en%, had significantly reduced risk 

of single or recurrent depressive episodes [19]. In the Zutphen Study of the Elderly, 

high intakes of ω–3 LCFAs (mean 407 mg/day) were associated with lower risk of 
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depressive symptoms (OR 0.46; 95% CI 0.22–0.95) compared with low intakes (21 

mg/day) [20]. Among 7,903 Spanish subjects, moderate consumption of fish had a 

relative risk reduction of >30% [21]. Among 10,602 men from Northern Ireland and 

France, the greater depressed mood is associated with lower fish intake in a non-

linear relationship [22]. A similar non-linear relationship between greater depres-

sion and lower fish intake was described among a UK population (n = 2,982) [23]. 

Jacka et al. [24] also found no association between fish consumption and depression 

defined by DSM-III criteria in a New Zealand population (n = 755). Murakami et al. 

[25] found no association between fish intake and lower risk of depressive symptoms 

among 618 adults. However, the mean ω–3 LCFA intake was approximately 0.37 en% 

far above the putative estimated average requirements and recommended dietary 

allowances presented here, thus the majority of the population may have adequate 

intakes. We conclude that epidemiological studies based on reports of dietary intakes 

have found an association between low ω–3 LCFA intake and significant depressive 

symptoms with good consistency.

Specificity

Tissue compositional studies have fairly consistently reported a lower ω–3 LCFA 

status and/or a higher ω–6 LCFA status among depressed subjects. The most specific 

evidence of tissue compositional deficits is the finding that DHA was 22% lower 

in the postmortem orbitofrontal cortex of patients with a major depressive disor-

der [26]. A similar deficit of DHA was found in the orbitofrontal cortex of patients 

with a bipolar disorder [27]. The pathophysiology of depressive disorders is thought 

to involve deficits in orbitofrontal cortex function [34]. These specific deficits in 

brain composition, combined with the epidemiologically based tissue compositional 

studies, indicate that deficits of ω–3 LCFA, in particular EPA and DHA, are asso-

ciated with depressive illnesses. Adams et al. [28] found a significant positive cor-

relation between the severity of depression and both the erythrocyte phospholipid 

arachidonic acid (AA) and EPA ratio and erythrocyte EPA alone. Maes et al. [29] 

found lower ω–3 LCFAs in serum phospholipids and cholesteryl esters of depressed 

patients compared to controls. Edwards et al. [30] reported lower EPA and DHA 

concentrations in the erythrocytes of depressed compared to control subjects. They 

also noted a biological gradient in which lower erythrocyte DHA correlated with 

greater severity of symptoms (r = 0.80, p < 0.01). Peet et al. [31] also reported a 

nearly 50% reduction in DHA in the erythrocytes of depressed subjects. Among a 

community sample of the elderly in Bordeaux, plasma EPA alone was inversely asso-

ciated with severity of depressive symptoms [32]. Among adolescents in Crete (n = 

90), depressive symptoms were negatively associated with EPA and positively associ-

ated with the ω–6 fatty acid dihomo-γ-linolenic acid in adipose tissue [33]. Among 

247 healthy males in Crete, mildly depressed subjects had significantly reduced 

(–34.6%) adipose tissue DHA levels compared to non-depressed subjects. Multiple 

linear regression analysis indicated that depression related negatively to adipose 
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tissue DHA levels [34]. Among 3,884 elderly subjects in Rotterdam, ω–3 LCFAs were 

significantly lower (5.2 vs. 5.9%, p = 0.02) and ratios of ω–6 to ω–3 LCFAs were 

higher (7.2 vs. 6.6, p = 0.01) comparing subjects with depressive disorders to con-

trols [35]. Among a US community sample (n = 207), higher plasma AA and lower 

EPA concentrations were associated with greater depression and neuroticism [36] 

and erythrocyte ω–3 LCFAs are decreased in patients with social anxiety disorder 

[37]. EPA levels in erythrocytes were significantly lower in suicide attempters than 

those of the control subjects [38]. When the highest and lowest quartiles of EPA in 

RBCs were compared, the ORs of suicide attempt was 0.12 in the highest quartile 

(95% CI 0.04–0.36, p for trend = 0.0001) after adjustment for possible confounding 

factors [38]. A bias against publications failing to find tissue compositional differ-

ences may exist, however most published studies indicate a lower ω–3 LCFA body 

composition status among depressed subjects.

Depression Associated with Other Medical Disorders

Compared to controls, depressed patients with acute coronary syndromes had sig-

nificantly lower concentrations of total ω–3 and DHA, and higher ratios of AA/

DHA and AA/EPA [39]. A second study of patients with acute coronary syndromes 

reported higher depression severity scores which were significantly associated with 

lower DHA levels, with similar but non-significant trends observed for EPA and total 

ω–3 LCFA levels [40]. Consistent with these reports, Schins et al. [41] found higher 

plasma AA/EPA ratios comparing depressed to non-depressed subjects among 50 

postmyocardial infarction patients. Kobayakawa et al. [42] found no differences 

comparing depressed and non-depressed lung cancer patients, but used a very low 

cut point to define depression. No differences in ω–3 LCFA compositions were found 

comparing depressed and non-depressed patients with multiple sclerosis [43].

Temporality

Deficits in ω–3 LCFA tissue status can be caused by either low intakes of ω–3 LCFA 

and/or excessive intakes of competing ω–6 fatty acids, for example greater dietary 

intakes of ω–6 linoleic acid, ranging from 1 to 8 en%, results in 10-fold lower tissue 

concentrations of ω–3 LCFA [44]. Strong temporal relationships have been reported 

between increasing intakes of the ω–6 fatty acid, linoleic acid and greater prevalence 

rates of major depression [45] and homicide mortality in five different countries 

between 1960 and 2000 (20-fold higher risk, r = 0.94, p < 0.0001) [46].

Biological Gradient

A biological gradient in the reduction of risk of depression is evident in ecologi-

cal studies and epidemiological studies. Progressively greater exposure to ω–3 

LCFA from fish consumption generally leads to a progressively lower incidence of 
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psychiatric symptoms and illness as reviewed above. Direct compositional analyses of 

tissue composition usually report a similar biological gradient, as reviewed above. In 

ecological and epidemiological studies, negative exponential equations consistently 

best describe the biological gradient relationships [44].

Plausibility

DHA is a nutrient required for neurological development and cannot be substituted 

by any other molecule [4, 47]. Studies of the multiple interacting mechanisms linking 

ω–3 LCFA and depressive symptoms have recently been reviewed [2, 48]. Plausible 

biological mechanisms linking dietary deficiencies of ω–3 LCFAs with psychiatric ill-

ness include: depletion of serotonin and dopamine levels by 50% in animal models, 

impaired neuronal migration, connectivity, timed apoptosis, and dendritic arboriza-

tion, such that there is an irreversible disruption in the neuronal pathways that reg-

ulate behavior [2], neuroinflammatory processes [29, 49] and dysregulation of the 

hypothalamic pituitary adrenal axis [3]. ω–3 LCFAs may prevent vascular contribu-

tions to depression [50]. Inadequate serotonergic and dopaminergic function has long 

been recognized in the pathophysiology of depression and is the target of most phar-

maceutical treatments. Concentrations of serotonin and dopamine were nearly dou-

bled in the frontal cortex of piglets among piglets fed infant formula supplemented 

with DHA and AA for 18 days [1]. Unconditioned mild stress induced a significant 

decrease in the tissue levels of serotonin in the frontal cortex, striatum and hippocam-

pus in the range of 40–65%. Interestingly, the ω–3 LCFA supplementation reversed 

this stress-induced reduction in 5-HT levels and decreased aggressive behavior [51]. 

One generation of ω–3 LCFA deficiency markedly increased depressive and aggres-

sive behaviors in rats [52]. Consistent with these animal studies, Hibbeln et al. [53] 

found the lower plasma DHA concentrations were correlated with lower concentra-

tions of the metabolites of both serotonin and dopamine in cerebrospinal fluid among 

healthy controls. Low cerebrospinal fluid concentrations of these metabolites have 

been repeatedly reported among suicidal and impulsive patients. Chronic alcohol use, 

in the context of a low ω–3 diet, depleted DHA levels by 50% in rhesus frontal cortex 

(from 14 to 7%), suggesting that depression and impulsive behaviors associated with 

alcohol may be attributable, in part, to depletion of ω–3 LCFAs [54]. Alcohol-induced 

depletion of neural tissues may contribute to the high rates of violence and depression 

among alcoholics [45]. We conclude that many known biological mechanisms plausi-

bly link ω–3 LCFA deficiencies to depressive and aggressive pathologies.

Coherence

‘Coherence between epidemiological and laboratory findings increases the likelihood of 

an effect’ [6]. One example of the coherence is the role of ω–3 LCFA in relationship 

to depressive symptoms in pregnancy. We posited that since maternal DHA is selec-

tively transported to the fetus, mothers without sufficient dietary intakes may become 

depleted, leaving them more vulnerable to depression symptoms during or after 
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pregnancy [10]. A cross-national ecological study supported this proposition link-

ing both low maternal milk DHA composition and low seafood consumption with 

higher rates of postnatal depression [10]. In a series of animal experiments, Levant et 

al. [55–57] have demonstrated depletion of regionally specific brain DHA in a single 

reproductive cycle, with multiple parity and alterations of dopamine and dopamine-

related behaviors. Decreased brain DHA was associated with decreased hippocampal 

brain-derived neurotrophic factor, increased corticosterone responses to stress and 

increased immobility on the forced swim test [58]. Otto et al. [59] found that post-

partum depression symptoms were associated with a slower recovery of DHA plasma 

status. A recent randomized controlled trial among pregnant women reported signifi-

cantly lower depression scores and higher rates of clinical response (62%) to 3.5 g/day 

of ω–3 fatty acids compared to placebo (27%) [60]. Another randomized controlled 

trial reported a trend towards efficacy, but was described by the authors as under-

powered [61]. Recent non-blinded trials of EPA and DHA supplementation have also 

reported a reduction of depressive symptoms related to pregnancy of 50% [62, 63]. Two 

prior epidemiological studies (from New Zealand and Japan) reported no association 

between seafood consumption and pregnancy-related depressive symptoms. The New 

Zealand study included only 80 women [64] and consequently did not have sufficient 

power. Although the Japanese study had much larger numbers (n = 865) it used a cut 

point of 9+ (rather than 13+) on the Edinburgh Postnatal Depression Scale and almost 

all the subjects had a relatively high intake of oily fish with very few subjects consuming 

zero ω–3 from seafood [65]. In contrast, Sontrop and Campbell [66] found low intakes 

of ω–3 LCFAs from seafood among smoking and single women associated depressive 

symptoms in pregnancy when more clinically significant cut points were used. In sum-

mary, the status of studies in pregnancy-related depression is coherent and promising: 

animal studies, adequately powered intervention and epidemiological studies do sup-

port the proposition that ω–3 LCFAs may have therapeutic benefit.

Experiment

The specificity and efficacy of ω–3 LCFAs in reducing significant depressive symptoms 

has been assessed in the meta-analyses of randomized placebo-controlled trials. Three 

recent meta-analyses of up to 11 randomized placebo-controlled trials of ω–3 fatty 

acids have each reported large treatment effect sizes of ω–3 LCFA in reducing signifi-

cant depressive symptoms [63, 67, 68]. In 2006 the accumulation of data was sufficient 

enough for the American Psychiatric Association to issue treatment recommendation 

for ω–3 LCFAs [63]. Since that time, several confirmatory studies have also been pub-

lished. Jazayeri et al. [69] reported similar response rates (defined as a 50% reduction 

in depressive symptoms) comparing patients receiving 1 g of EPA alone (50%) to flu-

oxetine (56%) but significantly better rates (81%) when patients received both EPA and 

fluoxetine in combination. Antypa et al. [70] found a reduction of depression-related 

cognitive symptoms even among healthy controls. Mischoulon et al. [71] reported anti-

depressant efficacy of DHA 1 g/day, but not at higher doses. Dinan et al. [72] reported 
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that ω–3 LCFA levels and ratios of EPA to AA predicted clinical responses to anti-

depressants. Freund-Levi et al. [73] found that reduction of aggressive and depres-

sive symptoms in Alzheimer’s patients to ω–3 LCFAs appeared to depend upon their 

APOEω4 genotype. Some randomized controlled trials have failed to find treatment 

effects [74–77]. However, Elkin et al. [78] have established that if clinical trials include 

subjects without a sufficiently high initial severity of depression, antidepressants were 

unlikely to demonstrate treatment effects because of inadequate power and floor effects 

inherent in the clinical study of depression [78]. A common feature of the clinical trials 

that have failed to find antidepressive effects of ω–3 LCFAs has been the enrollment of 

patients below the cut points of depressive symptom severity established by Elkin et al. 

[78] with one exception [75]. Thus, insufficiently powered trials should not be consid-

ered as definitively negative trials. The demonstration of efficacy in randomized trials 

appears to depend upon adequate symptom severity, baseline ω–3 LCFA status, per-

haps the relative amounts of EPA and DHA, and perhaps allelic variance. The evidence 

from the currently published placebo-controlled randomized trials and meta-analyses 

of these trials indicate that ω–3 LCFAs are effective in treating severe depression.

Analogy

Nutritional deficiencies in vitamin B6, vitamin B12, niacin, folate, pantothenic acid 

iodine and iron results in reversible neuropsychiatric symptoms. Deficiency symp-

toms for these nutrients are rarely confined to one organ system. Deficiencies in ω–3 

LCFAs may similarly increase risk of several chronic diseases. We have previously 

proposed that an increased risk of cardiovascular disease and an increased risk of 

affective disorders are two different manifestations of a common deficiency of ω–3 

LCFAs [45].

Suicide Risk, Prevention and Treatment

Epidemiologic data indicate that low fish consumption is a risk factor, but certainly not 

a sole determinant for suicide mortality. In a 17-year follow-up of 256,118 Japanese 

subjects [79], those who ate fish daily had a lower risk of death from suicide (OR 0.81; 

95% CI 0.27–0.91) compared to subjects eating fish less than daily, but that result 

was not adjusted for confounding variables. We examined 1,767 subjects in northern 

Finland and reported that frequent fish consumption (twice per week or more) sig-

nificantly reduced the risk of reporting depressive symptoms (OR 0.63, p < 0.03) and 

of reporting suicidal thinking (OR 0.57, p < 0.04) after adjustment for confounding 

variables [80]. De Vriese et al. [81] reported that the seasonal variation in ω–3 plasma 

status closely correlated with the seasonal variation in suicide rates in Belgium.

These epidemiological observations are consistent with the assessment of ω–3 LCFA 

body compositions directly among patients. Among suicide attempters without depres-

sion as a primary diagnosis, low concentrations of plasma EPA alone were robustly 
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correlated with greater psychopathology on rating scales of impulsivity, guilt, future 

suicide risk, and most subscales of the Comprehensive Psychopathological Rating Scale 

[82]. In a case-control study of 200 subjects in Dalian, China, Huan et al. [38] found 

30% lower RBC concentrations of EPA among suicide attempters and a dose response 

association of low EPA status and greater risk. Low DHA status predicted greater risk 

of a new suicide attempt in a follow-up study of more than 800 days, 5% of subjects 

above the median split had new attempts compared to 50% having new attempts among 

those below the median split [83]. These subjects also had resting PET scans quantifying 

regional glucose uptake. Future suicide attempters had greater activity in the anterior 

cingulate and limbic forebrain, consistent with the suspected pathophysiology of severe 

depression and posttraumatic stress disorder (PTSD). Low DHA in plasma phospho-

lipid robustly predicted this regional hyperactivity (r = –0.86, p < 0.0001) indicating that 

low DHA status may increase limbic system-mediated anxiety [83]. In a randomized 

blinded placebo-controlled trial, we have reported a 45% reduction in suicidal thinking 

and a 30% reduction in depression among patients with recurrent self-harm recruited 

from an emergency room 84]. This intervention used 2 g/day of ω–3 LCFAs in a 12-week 

trial of 49 subjects. Subjects also reported a reduced perception of daily stresses and 

anxiety which is likely relevant to reduction of risk of the development of PTSD. While 

substantial work needs to be conducted in the study of ω–3 deficiencies and increased 

suicide risk, current data suggest an apparent beneficial effect.

Cost Savings to Healthcare Systems

Because of the well-established benefits to cardiovascular health, cost-efficacy anal-

yses have been conducted for use of ω–3 LCFAs for secondary prevention for car-

diovascular disease. The Lewin Group (2006) [89] determined that supplementation 

with 1,800 mg/day of ω–3 long-chain fatty acids was estimated to prevent 384,303,000 

hospitalizations due to cardiovascular disease and save USD 3.1 billion over 5 years 

in the USA, using Congressional Budget office methodology. Similar reductions in 

misery and economic costs could be expected for the reduction in burden of neu-

ropsychiatric illnesses. For example, depressive disorders appear to respond to ω–3 

LCFAs more rapidly (within 2–4 weeks) and have a larger treatment effect size, in 

comparison to the well-documented effects in the reduction in cardiovascular risk 

[44]. The use of ω–3 LCFAs in primary prevention is likely to be much more cost-

effective than providing treatment of established neuropsychaitric illness. A RAND 

study indicated that evidence-based care using psychotherapy techniques, for PTSD 

and major depression, could save as much as USD 1.7 billion, or USD 1,063 per 

returning veteran; the savings come from increases in productivity, as well as from 

reductions in the expected number of suicides [85]. The use of ω–3 LCFAs in primary 

prevention of cardiovascular disease and psychiatric illness could potentially result in 

much greater savings in cost and human misery.
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Cultural Symbolism

It may not be too broad a leap to begin to question if our societal happiness or sense 

of collective meaning be impaired by deficiencies in ω–3 fatty acids? One approach 

to examining that question has been an evaluation of the meaning of fish as a cul-

tural symbol [86]. The data from randomized studies in major depression, suicide 

and aggression indicate that fish is a food with psychotropic properties because 

it is rich in long-chain ω–3 fatty acids that improve mental wellbeing, i.e. change 

emotional states. Central to the neuroscience of the assignment of meaning to a 

visual object is the pairing of that object to an emotional state. Symbols of foods 

or other substances with psychotropic properties may become paired to the emo-

tional states the substances induce. We posited that traditional cultural medical 

practices and religious symbolism reflect the ability of long-chain ω–3 fatty acids in 

fish and seafood to reduce depressive or dysphoric states [86]. Symbols of fish may 

have become consciously and unconsciously associated with the healing of mental 

illness and the optimization of emotional wellbeing sacred to both religion and heal-

ing. Throughout time, religious and spiritual practitioners have altered their dietary 

practices, observed their altered internal states, and linked dietary practices to spiri-

tual beliefs using religious and cultural symbols. In traditional Chinese medicine, 

seafood is used to calm excessive aggression. In Hinduism, Buddhism, Shinto, Islam, 

ancient Middle Eastern religions, Judaism, and Christianity, fish is symbolically 

associated with central tenets of faith and healing. For at least six millennia among 

independent cultures, fish has nearly universally been symbolically associated with 

sacred symbols of peace and religion. A recent study of a religious group that strictly 

adheres to the Christian Orthodox Church is remarkably consistent with this propo-

sition [87]. As proscribed by the Church, adherents followed dietary laws for absti-

nence from meat, eggs, and dairy products for most Wednesdays, Fridays and other 

periods such as 40 days before Christmas and 40 days before Easter, as well as August 

1–15 and other shorter periods, adding up to about 180 days per year [88]. Seafood 

is not only allowed but is also expected to be eaten and resulted in higher levels of 

adipose DHA in comparison to controls [87]. These higher adipose DHA levels 

were also correlated with lower levels of depressive symptoms. Thus, the culturally 

encoded dietary laws which affirm their religious identity also changed their body 

compositions of DHA and improved mental wellbeing. The treatment recommen-

dations of the American Heart Association and American Psychiatric Association to 

consume seafood 2–3 times per week are remarkably similar to the dietary practices 

of the Christian Orthodox Church.
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Magnetic Resonance Scanning

Spectroscopy revolutionized the study of organic chemistry and biochemistry during 

the last century. While X-ray crystallography, mass spectrometry and infrared spec-

troscopy cannot be used non-invasively in the study of fatty acid metabolism in adult 

human brains, fortunately nuclear magnetic resonance spectroscopy can be so used. 

In the context of human in vivo studies, nuclear magnetic resonance spectroscopy is 

more commonly referred to as magnetic resonance spectroscopy, partly to avoid the 

potentially pejorative and upsetting word ‘nuclear’ when talking to human volunteers 

and patients, and partly because the technique involves the use of the same magnetic 

resonance imaging (MRI) scanners as are employed to carry out structural MRI.

The technique requires a strong magnetic field, preferably at least 1.5 T when 

applied to the adult human brain. Certain atomic nuclei in the brain interact with this 

strong static magnetic field. These include protons and the 13-carbon and 31-phos-

phorus isotopes. In lay terms, each of these nuclei can be considered to possess more 

than one possible energy level in the magnetic field. Upon exposure of the brain to a 

short pulse of radiofrequency energy in a magnetic resonance scanner, some of these 

nuclei absorb the radiofrequency energy and enter a higher quantum energy state. 

Recovery of the previous, lower, quantum energy state is associated with the reverse 

process of the release of energy. The latter is measured as an amplified signal by the 

head coil receiver. 
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With all such measurements, there is the phenomenon of ‘noise’. For example, when 

a normal radio receiver is not tuned correctly to a radio station, then one hears a lot 

of static – noise. (Actually, some of this noise may derive from electromagnetic radia-

tion which had its origin in the big bang.) Then, as one tunes in to a correct station 

frequency (a resonance frequency), the signal-to-noise ratio becomes high enough to 

allow the station to be heard clearly. The individual nuclei also have particular reso-

nance frequencies. In order to improve the signal-to-noise ratio, multiple readings are 

taken. Since the noise is assumed to be random, successive additions of the readings 

lead to relative enhancement of the true signals against a diminishing background of 

noise signals which tend to cancel each other out. Furthermore, in a given molecule, all 

the protons do not usually resonate at the same frequency, and all the 31-phosphorus 

nuclei do not usually resonate at another single frequency (different from that for the 

protons). This is because the resonance frequencies for given nuclei are partly deter-

mined by the electron structure of the molecule. (In classical electromagnetic physics, 

one can consider that the motion of these charged electrons in a magnetic field gives 

rise to an electric current which in turn gives rise to an associated and opposing mag-

netic field, in accordance with Maxwell’s equations; this causes varying levels of shield-

ing of the nuclei from the applied external magnetic field.) The difference between 

the resonance frequencies of a given nucleus and of a reference nucleus is calculated 

and the chemical shift of the given nucleus is then defined in terms of the ratio of this 

difference to the resonance frequency of the reference nucleus. The chemical shift is 

usually expressed in parts per million (ppm). The signals from the brain are plotted 

as peaks against the chemical shift, the latter constituting the abscissa of the graph. 

The area under each peak is directly proportional to the concentration of the corre-

sponding nucleus in the sample (for instance, a brain voxel) under study. Moreover, 

the shape of the peak(s) yields information about the electrochemical environment of 

the nucleus in the molecule. Further details of this technique are beyond the scope of 

this article but may be found in the paper by Cox and Puri [1].

Magnetic resonance scanning also offers a non-invasive method of studying brain 

structure which, as with magnetic resonance spectroscopy, does not involve the use 

of ionizing radiation. Serially acquired high-resolution structural MRI scans of the 

brain can now be registered, that is to say, they can be positionally matched, with great 

accuracy. Upon successful anatomical registration, the scan first acquired chronologi-

cally may be electronically subtracted from the second scan. The resulting subtrac-

tion image highlights any regions of anatomical change in the brain, to the resolution 

of the technique used.

The registration technique used by our group in studying cerebral structural 

changes in relation to fatty acids, as described in this article, is a rigid-body sub-

voxel technique whose development was pioneered by Hajnal and Bydder [2]. In this 

technique, the brain is considered to be a rigid body whose spatial coordinates have 

changed between scans, in respect to the scanner, owing to spatial and rotational 

transformations. In mathematical terms, the technique assumes 6 rigid-body degrees 
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of freedom: 3 spatial and 3 rotational. The data matrix corresponding to the second 

(and subsequent) scan is spatially transformed in each of three mutually orthogonal 

directions and rotated about three mutually orthogonal axes and the resulting matrix 

compared with the matrix corresponding to the first, baseline, scan. The differences 

between the two matrices are then evaluated, and a chi-squared statistical index of 

goodness-of-fit is calculated. Based on these results, the whole process is repeated, 

in order to try to minimize the overall difference between the two sets of data. By 

means of such an iterative process, an optimum positional match between the two 

datasets is achieved. It turns out that this method can detect differences in position 

which are far smaller than the dimensions of a voxel; that is, the procedure can detect 

subvoxel shifts [3]. Such subvoxel shifts are particularly detectable at steep signal 

intensity boundaries, such as those which occur between cerebral tissue and cere-

brospinal fluid, such as the boundary of the lateral ventricles. In a further develop-

ment of this technique, Nadeem Saeed and Basant Puri developed a semi-automated 

method for the quantification of ventricular volumes. Further mathematical details 

of both techniques are beyond the scope of this article but may be found in a paper 

by Puri [4].

Depression

While working with ultra-pure eicosapentaenoic acid in patients with schizophrenia, 

schizoaffective disorder, and dyslexia, including a large double-blind, placebo-con-

trolled trial in schizophrenia, the first author became convinced that eicosapentaenoic 

acid appeared to have antidepressant properties. This hypothesis found support from 

epidemiological and biochemical evidence, which are now briefly outlined.

In his epidemiological study of the annual prevalence of major depression ver-

sus apparent fish consumption (fish catch plus fish imports minus fish exports) in 

nine countries, Hibbeln [5] found a significant negative correlation between these 

two variables. 

Maes et al. [6] reported a seasonal variation in the severity of depression in 104 

consecutively admitted depressed patients between November 1983 and April 1985, 

with peaks in Zung Self-Rating Depression Scale scores being found in April-May, 

with lows occurring in August-September. They also reported a significant season-

ality for suicide but not homicide from an analysis of the data on suicide, violent 

suicide, non-violent suicide, and homicide (categorized according to ICD-9) for all 

of Belgium for the period 1979–1987 [7]. Seasonality was present in violent but not 

in non-violent suicide. The number of violent suicides increased with age and was 

more prominent in men. The violent suicide spectral chronograms of younger and 

elderly persons were distinct in the occurrence of peaks in March-April and August, 

and lows in December-January. There was no significant relationship between violent 

suicide and homicide. The same group subsequently took monthly blood samples 
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from 23 healthy volunteers from Belgium, during the period from December 1991 to 

December 1992, to test for polyunsaturated fatty acid (PUFA) composition in serum 

phospholipids. Significant annual rhythms were detected in the long-chain PUFAs 

arachidonic acid (C20:4n–6), eicosapentaenoic acid (C20:5n–3), and docosahexaenoic 

acid (C22:6n–3) [8]. Comparing these data with their previous seasonal findings, the 

group found a significant correlation between, on the one hand, the changes over the 

previous 2 weeks in arachidonic acid and eicosapentaenoic acid, and, on the other 

hand, the mean weekly number of violent, but not non-violent, suicide deaths in 

Belgium. (There was also a significant correlation between the PUFAs arachidonic 

acid and docosahexaenoic acid, and the Bmax [
3H]-paroxetine binding to platelets.)

This Belgian group also studied serum phospholipids in post-fasting samples in 36 

patients with DSM-III-R major depression, 14 patients with DSM-III-R adjustment 

disorder with depressed mood and dysthymia, and 24 normal controls [9]. Compared 

with the normal controls, the major depression group showed a higher ratio of arachi-

donic acid to eicosapentaenoic acid, and lower eicosapentaenoic acid levels in the 

serum cholesteryl fraction and in phospholipids.

Adams et al. [10] from Australia published an important study of 20 moderately to 

severely depressed patients, diagnosed using research diagnostic criteria and exclud-

ing known bipolar mood disorder and reactive depression, in which they investigated 

relationships between severity of depression and levels and ratios of n–3 and n–6 

PUFA in plasma and erythrocyte phospholipids. Severity of depression was measured 

using the 21-item Hamilton Depression Rating Scale and a second linear rating scale 

of severity of depressive symptoms that omitted anxiety symptoms. They reported 

a significant correlation between the ratio of erythrocyte phospholipid arachidonic 

acid to eicosapentaenoic acid and severity of depression as rated by both scales. A 

significant negative correlation was also found between erythrocyte eicosapentaenoic 

acid and the linear rating scale of severity of depressive symptoms. The arachidonic 

acid to eicosapentaenoic acid ratio in plasma phospholipids and the ratio of erythro-

cyte long-chain (C20 and C22 carbon) n–6 to long-chain n–3 PUFAs were also sig-

nificantly correlated with this linear rating scale. The authors commented that their 

findings did not appear to be simply explained by differences in dietary intake of 

eicosapentaenoic acid. They further suggested that their findings provided a basis 

for studying the effect in depressed patients of nutritional supplementation aimed 

at reducing the ratio of arachidonic acid to eicosapentaenoic acid in tissues on the 

severity of depression. (Clearly this could be achieved by increasing the intake of 

eicosapentaenoic acid.)

Similar findings were reported in the British study by Edwards et al. [11] in which 

erythrocyte membrane fatty acid levels, dietary PUFA intake, and the level of depres-

sive symptomatology (assessed using Beck Depression Inventory) were measured 

in 10 depressed patients and 14 matched healthy control subjects. They reported a 

significant depletion of erythrocyte membrane n–3 PUFAs in the depressed patients 

which was not the result of reduced omega–3 fatty acid intake. Furthermore, the 
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severity of depression was found to correlate negatively with erythrocyte membrane 

levels and with dietary intake of n–3 PUFAs. In line with the paper by Adams et al., in 

this paper the authors suggested that their findings raised the possibility that depres-

sive symptoms may be alleviated by n–3 PUFA supplementation.

Based on the above evidence, our group became the first actively to treat major 

depression with eicosapentaenoic acid. The first published case of a patient with 

depression to be treated with eicosapentaenoic acid underwent cerebral 31-phos-

phorus magnetic resonance spectroscopy at baseline and at 79-month follow-up 

[12]. The patient was a 21-year-old male student with a 7-year history of unremitting 

depressive symptoms. In this severe case of treatment-resistant depression, no con-

ventional antidepressant treatment or combination of conventional treatment (for 

example, a selective serotonin re-uptake inhibitor with a lithium salt) has proved 

effective. However, the addition of ultra-pure eicosapentaenoic acid, in the form of 

its ethyl ester, was followed by clinical improvement. This included the cessation 

within 1 month of previously unremitting severe suicidal ideation, and also a marked 

improvement in previously troubling social phobia symptomatology. The improve-

ment continued and by 9 months the patient’s depressive symptoms had disappeared 

altogether, without any apparent adverse side effects from taking the nutritional sup-

plementation of pure eicosapentaenoic acid. During this 9-month period, the rela-

tive phosphomonoester peak value, expressed as a ratio to the total 31-phosphorus 

signal, increased markedly from 9.23 to 14.11%, representing a 52.9% increase. This 

31-phosphorus spectroscopy peak contains contributions from freely mobile phos-

phomonoesters, including phosphocholine and phosphoethanolamine, and small 

contributions from inositol phosphate, glycerophosphate, phosphothreonine, and 

l-phosphoserine. It also contains contributions from phosphomonoester-contain-

ing molecules which are less mobile, including some phosphorylated proteins, and 

from neuronal cytoskeletal protein components. Therefore the area under this peak 

indexes the level of membrane phospholipid anabolism. In contrast, over the same 

9-month period the relative phosphodiester peak value, again expressed as a ratio 

to the total 31-phosphorus signal, decreased from 46.60 to 41.99%, representing a 

9.8% increase in value. This 31-phosphorus phosphodiester spectroscopy peak con-

tains contributions from freely mobile phosphodiesters, including glycerophospho-

choline and glycerophosphoethanolamine, as well as contributions from less mobile 

phosphodiester-containing molecules including some involved in cell membrane 

structure, the latter including not just the outer cell membrane but also intracellular 

organelle membranes. Therefore, the area under this phosphodiester peak indexes 

the level of membrane phospholipid catabolism. Taken together, these neurospec-

troscopy results were consistent with the hypothesis that nutritional supplementa-

tion with pure eicosapentaenoic acid was associated with a reduction in neuronal 

phospholipid turnover, with increased cerebral membrane phospholipid biosynthe-

sis and decreased cerebral membrane phospholipid breakdown. They were also in 

line with the finding that the volumetric niacin response, which indexes arachidonic 
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acid-related signal transduction [13], showed an increase of 30% over the same 

9-month period.

High-resolution structural MRI scanning was also carried out at the same time 

as the 31-phosphorus neurospectroscopy. The structural data obtained underwent 

subvoxel registration using a sinc interpolation function. The sinc function is defined 

as:

sinc z = (sin z)/z, where z ∈ �

This is used as it is the appropriate in-plane point spread function for magnetic 

resonance image data acquired in the Fourier domain over a bounded region of 

k-space, with band-limited frequency content [14]. The right-hand side of the above 

equation may worry some readers as, clearly, z may need to take the value 0∈�, and 

this may lead to the concern that a singularity is being produced through the division 

of sin 0 (which equals zero) by zero. However, since the numerator may be expressed 

as a Taylor series, as z – z3/3! + …, it follows that sinc z is given by:

sinc z = 1 – z2/3! + … (z ∈ �)

and hence sinc 0 is unity and so the domain of the function is the whole of �, includ-

ing zero. Following subtraction of the subvoxel-registered images (follow-up minus 

baseline), detailed analysis revealed definite structural changes in the brain. In partic-

ular, during the 9-month initial period of nutritional supplementation with the ultra-

pure eicosapentaenoic acid, not only had the patient’s previous treatment-resistant 

depressive symptomatology markedly improved, but his lateral ventricles had actually 

shrunk in size [12, 15], again consistent with the 31-phosphorus neurospectroscopy 

changes described above.

Subsequent randomized, double-blind, placebo-controlled supplementation trials 

in depression with either ultra-pure eicosapentaenoic acid or a mixture of eicosapen-

taenoic acid and docosahexaenoic acid have generally been associated with clinically 

positive results [16].

Huntington’s Disease

Huntington’s disease, also known as Huntington’s chorea, is a progressive inherited 

neurodegenerative disease which is associated with abnormal involuntary move-

ments, psychiatric disturbance, and cognitive deterioration with progression to 

dementia and death over 10–20 years. The movement disorder typically includes 

choreiform movements in head, face, and arms, and a wide-spaced gait with sudden 

lurching. The psychiatric disturbance is variable but common. Initial insight may 

lead to depression, while prodromal personality changes, antisocial behavior with 

substance misuse, affective or schizophreniform disorders may occur. The initial 
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insight may give way to mild euphoria, explosive outbursts, irritability, and rage. 

Unfortunately there is no effective treatment for Huntington’s disease, although 

tetrabenazine, a benzoquinolizine derivative initially developed in the 1950s as an 

antipsychotic medication, may help with the movement disorder [17]. Huntington’s 

disease is inherited as an autosomal dominant disorder, with complete penetrance, 

caused by an expansion in the number of CAG repeats in the gene for huntingtin 

on chromosome 4p16.3, coding for polyglutamine [18]. Huntingtin interacts with 

many other proteins, including calmodulin (a Ca2+-binding regulatory protein), 

CREB-binding protein (a transcriptional coactivator), mSin3a (a transcriptional co-

repressor), cystathionine B-synthase (a metabolic enzyme), GAPDH (a glycolytic 

enzyme and translational regulator), HAP-1 (involved with membrane trafficking), 

HAP-40 (unknown function), HIP-1 (a pro-apoptotic protein involved in actin 

organization and endocytosis), HIP-2 (ubiquitin-conjugating enzyme), HYP-A (a 

WW-domain protein involved in mRNA splicing), HYP-B (a WW-domain protein 

which acts as a transcription factor), HYP-C (a WW-domain protein involved in 

mRNA splicing), MLK2 (JNK activator), N-CoR (nuclear receptor co-repressor), 

p53 (a transcription factor), SH3GL3 (involved with clathrin-mediated endocytosis 

and the recycling of synaptic vesicles), Shc (a signaling protein), and EGF receptor 

(a signaling protein).

Several converging lines of evidence lent support to the suggestion by the first 

author of this article that ultra-pure eicosapentaenoic acid might be therapeutic in 

Huntington’s disease. These included two single-case studies, findings relating to 

membrane phospholipid metabolism from a post-mortem study, impaired phospho-

lipid-related signal transduction, a study of the effects of fatty acids on a transgenic 

mouse model of the disease, and the cerebral effects of eicosapentaenoic acid in other 

neuropsychiatric disorders. We shall now outline each of these in turn.

The two single-case studies in Huntington’s disease were published by Vaddadi 

[19]. These 2 Australian patients showed improvement in some of their symptoma-

tology following supplementation with fatty acids, mainly from evening primrose oil, 

and therefore mainly containing linoleic acid and γ-linolenic acid.

Ellison et al. [20] carried out measurements of both phosphoethanolamine and 

ethanolamine in post-mortem brain samples from patients with Huntington’s disease 

using high-performance liquid chromatography with electrochemical detection. The 

concentrations of phosphoethanolamine were significantly reduced by 76% in the 

caudate, 53% in the putamen and 48% in the nucleus accumbens, while ethanolamine 

concentrations showed similar but smaller reductions. Since both phosphoetha-

nolamine and ethanolamine are involved in phospholipid metabolism, these findings 

suggested that phospholipid metabolism might be impaired in Huntington’s disease.

The first author of this paper carried out a study of the volumetric niacin response, 

which indexes phospholipid-related signal transduction [13], in patients with 

advanced (stage III) Huntington’s disease. Compared with age- and sex-matched 

control subjects, who had a mean volumetric niacin response of 28.3 mol s l–1, the 
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Huntington’s disease patients were found to have a reduced mean volumetric niacin 

response of 16.3 mol s l–1 [21].

Clifford et al. [22] described the systematic effects of treatment with fatty acids or 

placebo, given throughout life, on the emergence and progression of phenotype in the 

R6/1 transgenic mouse model of Huntington’s disease using assessment techniques 

which included a novel, ethologically based, approach to dissect neurological impair-

ment into topographical domains of function at a naturalistic level. Transgenic R6/1 

mice incorporate a human genomic fragment containing promoter elements exon 1 

and a portion of intron 2 of the huntingtin gene and they develop late-onset neuro-

logical deficits, as occurs with the motor abnormalities of Huntington’s disease. In 

this study, R6/1 and normal mice were randomized to receive a mixture of fatty acids, 

containing linoleic acid, γ-linolenic acid, eicosapentaenoic acid, and docosahexaenoic 

acid, or placebo on alternate days throughout life. Over mid-adulthood, topographi-

cal assessment of behavior revealed the R6/1 transgenic mice to evidence progressive 

shortening of stride length, with progressive reductions in locomotion, elements of 

rearing, sniffing, sifting and chewing, and an increase in grooming, deficits which 

were either not evident or markedly diminished in the R6/1 transgenic mice receiving 

the fatty acids. The latter also showed reductions in body mass and in brain dopamine 

D1-like and D2-like quantitative receptor autoradiography which were unaltered by 

the fatty acid supplementation. The authors concluded that these findings indicated 

that early and sustained treatment with fatty acids were able to protect against motor 

deficits in R6/1 transgenic mice expressing exon 1 and a portion of intron 2 of the 

huntingtin gene, and they suggested that fatty acids may have therapeutic potential in 

(human) Huntington’s disease.

The final strand of evidence related to the cerebral effects of eicosapentaenoic acid 

in neuropsychiatric disorders other than Huntington’s disease. These effects in rela-

tion to depression have been described above. Similar benefits were also found in 

schizophrenia, with clear evidence of a reversal of the previously increasing ventricle-

to-brain ratio accompanying clinical benefits in the first patient with schizophrenia 

to be treated solely with ultra-pure eicosapentaenoic acid (in the absence of any other 

medication, including antipsychotics) [23, 24].

Based on the above evidence, we carried out the first pilot study of ultra-pure eicos-

apentaenoic acid in Huntington’s disease. This consisted of a 6-month randomized, 

placebo-controlled study of the ethyl ester of eicosapentaenoic acid in 7 inpatients with 

advanced (stage III) Huntington’s disease (3 on eicosapentaenoic acid, 4 on placebo; 

no significant difference in age or sex between the groups) [25]. At 6-month follow-

up all the patients treated with eicosapentaenoic acid were found to have improved 

on the orofacial component of the Unified Huntington’s Disease Rating Scale while 

all the patients on placebo deteriorated on this scale (p < 0.03). Following subvoxel 

registration of follow-up 3D MRI brain scans with baseline scans, subtraction images 

showed that while the placebo was associated with progressive cerebral atrophy, the 

eicosapentaenoic acid supplementation was associated with a reverse process. From 
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this pilot study we concluded that treatment with eicosapentaenoic acid appeared to 

be associated with beneficial motor and MRI changes.

As a result of this pilot study, a larger, phase III, multicenter, double-blind, pla-

cebo-controlled trial was carried out by us [26]. A total of 135 patients with either 

stage I (a decline in functional capacity to work with impaired motor function and 

emotional control, including irritability and depression, but fully able to maintain his 

or her own activities of daily living) or stage II (unable to work or drive a car, reliant 

on family or other carers for activities of daily living but with assistance can remain at 

home, increasing dysarthria, dysphasia, loss of motor control and cognitive function) 

Huntington’s disease entered into the study to receive either ultra-pure eicosapen-

taenoic acid (as the ethyl ester) or placebo daily. All the patients had symptomatic, 

genetically confirmed Huntington’s disease or had a family history of Huntington’s 

disease. The inclusion criteria also included having a score from 50 (24-hour supervi-

sion appropriate: assistance required for bathing, eating, toileting) to 90 (no physical 

care needed if difficult tasks are avoided) on the Independence Scale component of 

the Unified Huntington’s Disease Rating Scale. Pharmacotherapy with depot antip-

sychotics was not allowed. The primary efficacy variable was the Total Motor Score 

4 subscale of the Unified Huntington’s Disease Rating Scale. The items of this motor 

subscale are: maximal dystonia (five locations); maximal chorea (seven locations); 

ocular pursuit (two tests); tongue protrusion; retropulsion pull test; finger tapping 

(right and left); pronation and supination of the hands (right and left); rigidity (right 

and left), and tandem walking. A total of 121 patients completed 12 months, and 83 

did so without protocol violations (the per protocol cohort). Intent-to-treat analysis 

revealed no significant difference between eicosapentaenoic acid and placebo on the 

Total Motor Score 4 subscale. In the per protocol cohort, however, eicosapentaenoic 

acid proved significantly better than placebo on this Total Motor Score 4 subscale. 

Exploration of moderators of the efficacy of eicosapentaenoic acid on the motor 

signs of the Total Motor Score 4 subscale showed a significant interaction between 

treatment and a factor defining patients with high versus low CAG repeat number at 

4p16.3. Reported adverse events were distributed equally between treatment arms.

Two potential mechanisms of action of eicosapentaenoic acid in Huntington’s 

disease have recently been proposed [27, 28]. They are based on two pathways 

which might be of pathophysiologic significance in this disease. In the first path-

way, interleukin-1β (IL-1β), lipopolysaccharide, and glutamate may induce nuclear 

factor-κB (NF-κB), a transcription factor which is a critical regulator of neuronal sur-

vival, via an IKK complex, p65, IκBα, and p50, while in the second pathway hunting-

tin, lipopolysaccharide, and radiation may activate c-jun N-terminal kinases (JNK), 

which may mediate neuronal degeneration via JNK-AP-1. Eicosapentaenoic acid 

appears to inhibit both NF-κB and JNK-AP-1, and this may therefore help explain its 

efficacy in Huntington’s disease. Our finding that the clinical efficacy of eicosapen-

taenoic acid in Huntington’s disease varied according to the CAG repeat number is 

more difficult to explain at present, but a partial explanation may lie in the fact that 
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the CAG repeat length determines the extent of mitochondrial sensitivity towards 

(metabolic) challenges; further research is clearly indicated.

Myalgic Encephalomyelitis

Myalgic encephalomyelitis, also known as chronic fatigue syndrome, is a devastat-

ing disease which, according to the Revised CDC (Centers for Disease Control and 

Prevention) Criteria, include the following symptoms and signs in addition to chronic 

fatigue: impaired memory or concentration; sore throat; tender cervical or axillary 

lymph nodes; myalgia; multi-joint pains; new headaches; unrefreshing sleep, and post-

exertion malaise [29]. The etiology of myalgic encephalomyelitis is currently unknown. 

However, there is evidence that LC-PUFAs may have an important role to play [30]. A 

key part of the evidence for this came from proton neurospectroscopy studies.

The first such systematic proton neurospectroscopy study was carried out by our 

group, in which 8 patients with myalgic encephalomyelitis (chronic fatigue syn-

drome), diagnosed according to the Revised CDC Criteria, were compared with 8 

matched control subjects [31]. The key finding was an increased level of cerebral cho-

line (the area of the peak associated with free choline-containing compounds) in the 

myalgic encephalomyelitis patients. The second systematic proton neurospectroscopy 

study was carried out by Chaudhuri et al. [32] in Scotland, using the same number of 

patients and controls as we had in our study. Again, this group reported a significant 

increase in the area of the peak associated with free choline-containing compounds in 

the myalgic encephalomyelitis patients compared with the matched control subjects. 

A series of 3 cases of juvenile myalgic encephalomyelitis was reported by Tomoda et 

al. [33] from Japan, and again included the finding of a raised level of the choline peak 

on proton neurospectroscopy.

We have hypothesized that the raised level of choline-containing compounds in 

the brain in myalgic encephalomyelitis may be the result of reduced incorporation 

of the choline polar head group in phospholipid molecules (at the Sn3 position) in 

both outer cell membranes and intracellular organelle membranes in neurons and 

glial cells [30]. In turn, this might be the result of impaired biosynthesis of membrane 

phospholipid molecules in the brain, caused by reduced biosynthesis of long-chain 

PUFAs (at the Sn2 position of phospholipids) by putative viral infectious inhibition of 

the first LC-PUFA biosynthetic step catalyzed by Δ6-desaturase.

Intriguingly, there exist other lines of evidence pointing to a possible viral etiology 

for myalgic encephalomyelitis [30]. One is that many clinical features of epidemics 

of myalgic encephalomyelitis-like illnesses, such as the Los Angeles County Hospital 

epidemic of 1934 and the Royal Free Hospital (in London, UK) epidemic of 1955, are 

consistent with viral infections. Another is that the general pattern of immune sys-

tem changes in myalgic encephalomyelitis is consistent with a pre-existing long-term 

viral infection. Again, direct analysis of blood fatty acids has shown decreased levels 
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of certain long-chain PUFAs in myalgic encephalomyelitis patients compared with 

matched control subjects. 

The recent report by Kerr’s group [34] of up-regulation of the mitochondrial trans-

lation initiation factor EIF4G1 transcript variant 5 in myalgic encephalomyelitis is 

consistent with a persistent virus infection. Virus infections, through their inhibition 

of Δ6-desaturase, might then cause a deficiency of long-chain PUFAs.

Two placebo-controlled, double-blind trials of the use of fatty acids in chronic 

fatigue patients have been published. The first, by Behan et al. [35], showed a sig-

nificant benefit, while the second, by Peet’s group [36], proved negative. In the first 

neuroimaging study of fatty acid supplementation in a patient with myalgic encepha-

lomyelitis, our group carried out high-resolution MRI brain scanning at baseline and 

after just 16 weeks in a female patient in her mid-20s who had a 6-year history of 

unremitting symptoms of this illness [37]. The fatty acid supplementation was associ-

ated with both clinical improvement and, upon subvoxel registration of the structural 

MRI scans, a reduction in the ventricle-to-brain ratio, with the baseline lateral ven-

tricular volume of 28,940 mm3 decreasing to just 23,660 mm3 at 16-week follow-up. 

This is clearly an area that requires further research.

Forensic Patients with Schizophrenia

We have already mentioned the first case report of the successful use of ultra-pure 

eicosapentaenoic acid (in the absence of any other form of pharmacotherapy) in 

the treatment of a patient with a long history of positive and negative symptoms of 

schizophrenia; the rapid clinical improvement was accompanied by improvements in 

indices of cerebral structure, including a reduction in the lateral ventricular volume 

and in the associated ventricle-to-brain ratio [23, 24]. These results were consistent 

with the membrane hypothesis of schizophrenia, formulated largely by the late David 

Horrobin.

However, schizophrenia is a heterogeneous disorder. While the majority of struc-

tural brain-scanning studies of schizophrenia have indicated that the disorder is 

associated with ventricular enlargement, a study of first-episode schizophrenia, car-

ried out by our group, that utilized the monomodal rigid-body subvoxel registra-

tion technique outlined earlier, showed that lateral ventricular volumes can alter in 

either direction early on in the course of the illness [38]. Moreover, the direction of 

change may relate to schizophrenia syndromes. Compared with the control subjects, 

the schizophrenia patients categorized as suffering from the withdrawn syndrome 

showed progressive ventricular enlargement, with an increase in ventricle-to-brain 

volume ratio, whereas the schizophrenia patients suffering from the active syndrome 

showed a reduction in ventricle-to-brain volume ratio, with a change opposite in sign 

and smaller in magnitude [39]. The active syndrome consists of raised activity levels, 

accelerated cognition, positive thought disorder, positive labile affect, and affective 
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delusions, and has been said to be associated with a greater left than right functional 

activation, while the opposite pattern of functional hemispheric imbalance has been 

said to be associated with the withdrawn syndrome, which comprises the essential 

negative features of schizophrenia [40]. In studying schizophrenia, therefore, it is 

helpful to select a group which is relatively well circumscribed clinically. We have 

chosen to do so by studying those patients with schizophrenia who have seriously 

and violently offended while psychotic; we were interested to ascertain whether the 

subgroup of patients with schizophrenia who are violent offenders may suffer from 

abnormal membrane phospholipid metabolism.

Accordingly, we carried out 31-phosporus neurospectroscopy on 15 male patients 

with DSM-IV schizophrenia who were all inpatients in the largest European Medium 

Secure Unit and on a comparison group of 13 healthy normal age-matched male con-

trols with no known medical or psychiatric disorder [41]. Expert psychiatric opinion, 

accepted in court, was that all the patients had violently offended directly as a result 

of schizophrenia prior to admission. These offences consisted of homicide, attempted 

murder, or wounding with intent to cause grievous bodily harm. Interestingly, we 

found no direct neurospectroscopic evidence of a membrane phospholipid abnor-

mality in the brain in this cohort of patients, which underlines the heterogeneous 

nature of the illness. However, the level of β-nucleotide triphosphate (β-NTP) was 

found to be lower, and the level of γ-nucleotide triphosphate (γ-NTP) higher, in the 

forensic schizophrenia patient group compared with the control group. While β-NTP 

indexes ATP (adenosine triphosphate), the majority of ADP (adenosine diphosphate) 

is nuclear magnetic resonance-invisible, although the γ-NTP signal overlaps with 

signals from β-ADP, although the signal of γ-NTP is much stronger. Therefore, our 

results were consistent with increased cerebral energy metabolism taking place in this 

particular group of schizophrenia patients.

We then decided to examine the association of arachidonic acid-related signal 

transduction, as quantified using the volumetric niacin response [13], with cerebral 

metabolism, measured using 31-phosphorus neurospectroscopy, in this group of 

schizophrenia patients [42]. There was a strong, and negative, correlation between 

the volumetric niacin response and the cerebral metabolite concentration of inor-

ganic phosphate expressed as a ratio of the total 31-phosphorus signal. There was 

also a trend towards a negative correlation between the volumetric niacin response 

and the metabolite concentration of α-NTP expressed as a ratio of the total 31-phos-

phorus signal. This suggests that reduced phospholipid signal transduction may be 

related to higher cerebral energy metabolism in this group of schizophrenia patients. 

However, since the volumetric niacin response is reduced in patients with schizo-

phrenia compared with normal controls, this suggests that a lower response is likely 

to be associated with increased severity of illness. Hence, these results lead to the pos-

sibility that patients with schizophrenia who have violently offended and have poor 

phospholipid-related signal transduction may have higher levels of cerebral energy 

metabolism. 



MRI and MRS 43

 1 Cox IJ, Puri BK: In vivo MR spectroscopy in diag-

nosis and research of neuropsychiatric disorders. 

Prostaglandins Leukot Essent Fatty Acids 2004;70: 

357–360.

 2 Hajnal JV, Saeed N, Soar EJ, Oatridge A, Young IR, 

Bydder GM: A registration and interpolation proce-

dure for subvoxel matching of serially acquired MR 

images. J Comput Assist Tomogr 1995;19:289–296.

 3 Bydder GM, Hajnal JV: Registration and subtrac-

tion of serial magnetic resonance images. Part 2. 

Image interpretation; in Bradley WG, Bydder GM 

(eds): Advanced MR Imaging Techniques. London, 

Dunitz, 1997, pp 239–257.

 4 Puri BK: High-resolution magnetic resonance imag-

ing sinc-interpolation-based subvoxel registration 

and semi-automated quantitative lateral ventricular 

morphology employing threshold computation and 

binary image creation in the study of fatty acid 

interventions in schizophrenia, depression, chronic 

fatigue syndrome and Huntington’s disease. Int Rev 

Psychiatry 2006;18:149–154.

 5 Hibbeln JR: Fish consumption and major depres-

sion. Lancet 1998;351:1213.

 6 Maes M, Meltzer HY, Suy E, De Meyer F: Seasonality 

in severity of depression: relationships to suicide 

and homicide occurrence. Acta Psychiatr Scand 

1993;88:156–161.

 7 Maes M, Cosyns P, Meltzer HY, De Meyer F, Peeters 

D: Seasonality in violent suicide but not in nonvio-

lent suicide or homicide. Am J Psychiatry 1993;150: 

1380–1385.

 8 De Vriese SR, Christophe AB, Maes M: In humans, 

the seasonal variation in poly-unsaturated fatty 

acids is related to the seasonal variation in violent 

suicide and serotonergic markers of violent suicide. 

Prostaglandins Leukot Essent Fatty Acids 2004;71: 

13–18.

 9 Maes M, Smith R, Christophe AB, Cosyns P, 

Desnyder R, Meltzer H: Fatty acid composition in 

major depression: decreased omega–3 fractions in 

cholesteryl esters and increased C20:4ω–6/C20: 

5ω–3 ratio in cholesteryl esters and phospholipids. J 

Affect Disord 1996;38:35–46.

10 Adams PB, Lawson S, Sanigorski A, Sinclair AJ: 

Arachidonic acid to eicosapentaenoic acid ratio in 

blood correlates positively with clinical symptoms 

of depression. Lipids 1996;31(suppl):S157–S161.

11 Edwards R, Peet M, Shay J, Horrobin D: Omega–3 

polyunsaturated fatty acid levels in the diet and in 

red blood cell membranes of depressed patients. J 

Affect Disord 1998;48:149–155.

12 Puri BK, Counsell SJ, Hamilton G, Richardson AJ, 

Horrobin DF: Eicosapentaenoic acid treatment in 

treatment-resistant depression associated with 

symptom remission, structural brain changes and 

reduced neuronal phospholipid turnover. Int J Clin 

Pract 2001;55:560–563.

13 Puri BK, Hirsch SR, Easton T, Richardson AJ: A 

volumetric biochemical niacin flush-based index 

that noninvasively detects fatty acid deficiency in 

schizophrenia. Prog Neuropsychopharmacol Biol 

Psychiatry 2002;26:49–52.

14 Jain AK: Fundamentals of Digital Image Processing. 

Englewood Cliffs, Prentice Hall, 1989.

15 Puri BK, Counsell SJ, Richardson AJ, Horrobin DF: 

Eicosapentaenoic acid in treatment-resistant depres-

sion. Arch Gen Psychiatry 2002;59:91–92.

16 Ross BM, Seguin J, Sieswerda LE: Omega–3 fatty 

acids as treatments for mental illness: which disor-

der and which fatty acid? Lipids Health Dis 2007;6: 

21.

17 Kenney C, Jankovic J: Tetrabenazine in the treat-

ment of hyperkinetic movement disorders. Expert 

Rev Neurother 2006;6:7–17.

Discussion and Conclusions

In this paper we have demonstrated the utility of applying serial structural MRI anal-

ysis and proton and 31-phosphorus magnetic resonance spectroscopy to the investi-

gation of cerebral fatty acids in neurologic and psychiatric disorders. While most of 

these applications have thus far been mainly related to advancing our understanding 

of the basic scientific foundations of the relationship of lipids to the pathophysiology 

of the disorders described, it seems probable that they will increasingly contribute to 

the study of the effects of dietary supplementation in these disorders.
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Omega–3 fatty acids cannot be made de novo in the human body. They are derived 

from linolenic acid (18:3,n–3) and are an essential part of the human diet. A substan-

tial body of research exists indicating the beneficial effects of increased dietary intake 

of essential omega–3 fatty acids on cardiovascular and brain health. They are required 

to maintain membrane integrity and necessary for optimal cellular function [1].

Docosahexaenoic acid (DHA, 22:6,n–3) is an essential omega–3 fatty acid obtained 

from the diet mostly in the form of fish oil and marine algae. It is highly concentrated 

in membrane phospholipids of the retina and brain [2]. Lipids comprise 22% of the 

cerebral cortex and DHA is the most abundant omega–3 fatty acid in the phospho-

lipid bilayer of neurons. DHA has been shown to be essential for proper maturation 

and maintenance of the visual cortex and retina [3]. Free DHA has been shown to 

limit oxidative-stress induced apoptosis via the production of neuroprotectin D1 

(NPD1), a transient, yet powerful, signaling molecule.

As the name suggests, NPD1 is a potent anti-inflammatory, anti-apoptotic agent 

with great neuroprotective utility in multiple disease processes. D1 indicates that 

NPD1 is the first of presumably several neuroprotective signaling molecules derived 

from DHA in circumstances of oxidative stress and cellular damage (fig. 1). Enhancing 

our understanding of and influence on DHA’s endogenous anti-inflammatory signal-

ing potential, including the synthesis of NPD1, will provide a means for developing 

therapeutic strategies aimed at decreasing the morbidity and mortality of many dev-

astating diseases, including retinal degenerative diseases, stroke, Alzheimer’s disease 

(AD), and epilepsy.

T.D.N. and D.T.S. contributed equally to this work.
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Adequate Stores of DHA Are Required for Proper CNS Function

The consumption of large amounts of DHA has been associated with multiple health 

benefits. DHA has been shown to be involved with brain and retinal development, 

aging, memory formation, synaptic membrane function, photoreceptor biogen-

esis and function, and neuroprotection [2, 4]. DHA-supplemented infant formula 

enhances maturation of retinal function, visual acuity, and mental performance in 

preterm and term infants [2]. In age-related macular degeneration, there is an inverse 

relationship between diets high in DHA and risk for the disease [5]. Finally, epide-

miologic studies indicate that diets enriched with DHA are associated with reduced 

risk of cognitive impairment and slow the progression of dementia and AD [6].

Certain individuals with low dietary intake of DHA, such as vegans, vegetar-

ians, and the elderly, have been shown to have less brain DHA [7]. The fatty acid 
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composition of brain lipids can be modified by diet. While lack of DHA in the diet 

will eventually result in loss of DHA content from brain and retina, both the brain 

and retina actively conserve DHA pools displaying a striking ability to retain DHA 

even after prolonged dietary deficiencies [8]. In cases of prolonged essential omega–3 

fatty acid deficiency, decreased amounts of DHA in neuronal membranes alter mem-

brane fluidity and signaling properties [6].

Depleted stores of DHA are associated with several health risks. It has been sug-

gested that a lack of specific dietary nutrients, such as essential omega–3 fatty acids, 

may significantly contribute to cognitive decline and increased risk and severity of 

brain injury. When rats are fed low-DHA diets for one or more generations, clear def-

icits in cognition are observed [6]. Blood DHA levels are decreased in various forms 

of retinitis pigmentosa, in Usher’s syndrome, and in animal models of inherited reti-

nal degeneration [2].

Aging is associated with decreased levels of DHA in both rat and human brains, 

especially the frontal cortex [6]. In addition to decreased dietary intake and reduced 

liver fatty acid desaturase capacity, age-related defects in antioxidant systems result 

in an increase in lipid peroxidation that further reduces DHA levels [6]. Therefore, 

the elderly population is specifically at risk for the cognitive and cellular impairments 

associated with depleted DHA levels.

DHA Is Delivered to the CNS via the Bloodstream

DHA is concentrated in the brain and retina. DHA and its lipid precursor, linolenic 

acid (18:3,n–3), are provided by the diet. Linolenic acid is elongated and desaturated 

in liver hepatocytes to form DHA. Hepatic stores of DHA are then activated (22:6-

CoA) and acylated into phospholipids and released as lipoproteins from the liver into 

the bloodstream for distribution to the central nervous system (CNS) [9].

Once processed in the liver and released into the blood, retinal pigment epithelial 

(RPE) cells take up newly elongated DHA via the choriocapillaris [2]. Intraperitoneal 

injection of [3H]DHA demonstrates that DHA first accumulates in RPE cells prior to 

being incorporated into the inner segments of photoreceptors [10, 11]. Under in vitro 

conditions, the retina has been shown to incorporate approximately 60–90% of physi-

ologically meaningful administrations of [3H]DHA (i.e., nanomolar range) into the 

retina in the form of esterified phospholipids within 4 h [12].

Phospholipids Containing DHA Are Incorporated into Photoreceptors

RPE cells are derived from the neuroectoderm and are closely associated with photo-

receptors. In humans, approximately 23 photoreceptors interact with each RPE cell. 

They are specialized to maintain optimal photoreceptor health by providing nutrition, 
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protection, synthesis/secretion of neurotrophic growth factors, and phagocytosing/

processing of aged photoreceptor outer segment tips [13]. After RPE cells absorb 

DHA from the choriocapillaries, they release DHA into the interphotoreceptor matrix, 

where it is preferentially taken up by the myoid region of the photoreceptor inner seg-

ment and activated by coenzyme A. DHA is then esterified into both the SN-1 and 

SN-2 position of phosphatidic acid and triacylglycerol, ultimately producing multi-

ple DHA-containing membrane phospholipids including phosphatidylethanolamine, 

phosphatidylinositol, phosphatidylserine, and phosphatidylcholine [14–17].

Previous research has indicated that photoreceptors are rich in a supraenoic form 

of the phospholipid phosphatidylcholine. This phospholipid incorporates a DHA 

in position SN-2 and a 24-6-36:6 elongation product of DHA in position SN-1 that 

tightly bind rhodopsin [18]. The SN-1 tail functions to ‘curl’ and restrict rhodopsin 

motion [19]. This interaction between DHA and rhodopsin is required for photore-

ceptor function and vision. In healthy individuals, DHA must be provided in ade-

quate quantities for successful photoreceptor formation during prenatal and perinatal 

development; DHA must be provided over the lifetime of the individual in order to 

carry out photoreceptor repair and membrane turnover.

Photoreceptors have outer segments composed of stacks of photosensitive disks 

that respond to light exposure. These photosensitive membrane disks are continu-

ously formed in the basal portion of the photoreceptor outer segment with a propor-

tional amount shed from the outer segment tips. As more and more membrane disks 

are assembled and accumulate in the basal region, older disks are advanced toward 

the photoreceptor tip where they are ultimately shed and phagocytosed by closely 

associated RPE cells. The rate of membrane shedding and the rate of membrane bio-

genesis is identical, resulting in successful outer segment renewal/turnover with no 

modification in outer segment length [10].

Electron microscopic autoradiography, using labeled [3H]DHA, tracks disk labeling 

and progression. [3H]DHA is not observed at the tips of the photoreceptors prior to 

labeled disk migration into the tip region. In addition, the density of [3H]DHA incor-

porated into each disk membrane in the basal region of the photoreceptor outer seg-

ment remains stable throughout the life of the disk membrane [10]. Thus, there is no 

further redistribution of DHA once it is loaded onto a disk membrane at the basal 

region of the outer segment [10]. Rather, photoreceptors incorporate DHA into disks 

at the base of the outer segment where DHA molecules will remain until eventual outer 

segment shedding and phagocytosis by the RPE cells [10].

The body actively conserves DHA stores in order to prevent DHA depletion. This is 

especially true in the retina. After RPE cells phagocytize shed photoreceptor outer seg-

ment tips during routine photoreceptor maintenance, DHA, like vitamin A, is recycled 

back to the inner segments of the photoreceptor via the interphotoreceptor matrix. In one 

experiment, frogs were injected with [3H]DHA until the entire photoreceptor outer seg-

ment was heavily labeled (~30 days after injection). During subsequent shedding of pho-

toreceptor tips and the uptake of those phagosomes into the RPE cells, a pulse of labeled 
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[3H]DHA was observed entering the RPE cell. Once inside the RPE cell, the transient oil 

droplets containing [3H]DHA-labeled phospholipids immediately underwent degradation 

and dissipated. It was observed that during the experiment, 12% of the labeled [3H]DHA 

was phagocytized into the RPE cell, while total retinal [3H]DHA remained unchanged 

[10]. The stable [3H] signal in photoreceptors indicates that [3H]DHA is not lost during 

outer segment shedding. Rather, RPE cells must successfully recycle [3H]DHA back to the 

photoreceptor inner segment for subsequent use in new membrane disks [10]. Although 

this efficient recycling of DHA back and forth from the RPE cells to the photoreceptors 

via the interphotoreceptor matrix (IPM) has been observed, it is still poorly characterized 

regarding the mechanisms of DHA uptake into the photoreceptor inner segment as well 

as a detailed description of the specific form of DHA transported across the IPM.

DHA in Neurodegenerative Disease

DHA has been implicated as a risk modifier for several CNS pathologies. Some 

prospective and case-control epidemiological studies have suggested that increased 

dietary intake of DHA lowers the long-term risk for developing AD and that a low 

concentration of DHA in the blood is an AD risk factor [20]. Post-mortem studies 

have shown that DHA is reduced in the hippocampi of AD patients [21]. Additionally, 

animal models of AD are more vulnerable to DHA depletion than controls, and DHA 

reduces several pathological hallmarks of AD (e.g., synaptic dropout, τ protein hyper-

phosphorylation, and Aβ peptide aggregation) [20].

In AD, abnormal accumulation of the Aβ peptides results in cell death associ-

ated with Ca+ excitotoxicity and a general oxidative stress response. We have recently 

shown that DHA downregulates Aβ peptide secretion from aging human neural (HN) 

cell cultures [21]. This response is associated with a concomitant increase in NPD1 

synthesis. The soluble amyloid precursor protein-α (sAPPα) is a product of β-amyloid 

precursor protein (β-APP) cleavage by the α-secretase pathway and is known to reduce 

Aβ peptide secretion. Application of sAPPα to HN cells also significantly increases 

NPD1 synthesis, and application of a small concentration (50 nm) of exogenous NPD1 

protects HN cells from Aβ42 peptide-induced apoptosis. Exogenous NPD1 exerts this 

effect by activation of a neuroprotective program that counteracts oxidative stress by 

upregulation of anti-apoptotic Bcl-2 family proteins (Bcl-2; Bcl-xl; Bfl-1/A1), down-

regulation of pro-apoptotic Bcl-2 family proteins (Bad; Bax; Bid; Bik), and inhibition 

of pro-inflammatory gene expression (COX-2 [prostaglandin synthase-2, cyclooxyge-

nase-2]; CEX-1 [chemokine exodus protein-1]; B-94 [TNF-α-inducible pro-inflamma-

tory element]). Moreover, in the same study, both unesterified DHA and NPD1 were 

found to be significantly reduced in the hippocampi from AD patients as compared to 

age-matched controls. These data suggest that DHA acts to induce an anti-apoptotic, 

neuroprotective gene-expression program that counteracts Aβ42-induced inflamma-

tion by serving as a precursor to the potently bioactive oxygenation product NPD1.
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DHA in Epilepsy, Epileptogenesis, and Synaptic Plasticity

Alterations in fatty acid metabolism have been proposed to contribute to the efficacy 

of the ketogenic diet used to treat refractory epilepsy in children [22–24]. Ketogenic 

diets have been shown to increase plasma DHA in rats and humans [25, 26], and rats 

consuming a ketogenic diet showed a 15% increase in brain DHA as compared to 

controls [22]. Multiple mechanisms have been proposed for DHA’s role in modulation 

of seizure activity and pathological sequelae, including attenuation of neuronal mem-

brane excitability via direct interaction with ion channels, regulation of expression 

and activity of mitochondrial uncoupling proteins, and regulation of genes linked 

to energy metabolism [24]. However, strong evidence for reduced seizure activity in 

patients fed DHA-enriched diets has remained elusive [27, 28].

DHA added to hippocampal slices may elicit anti-epileptogenic activity, modulate 

ion channels and neurotransmitter receptors, and in turn regulate synaptic plastic-

ity. There are conflicting observations on the effects of DHA using extracellular and 

intracellular recordings of hippocampal slices. DHA facilitates N-methyl-d-aspartate 

(NMDA) responses [29], and it blocks delayed-rectifier K+ channels [30, 31]. Thus a 

consequence of these DHA actions would be enhancement of neuronal excitability 

and worsening of seizure activity. In contrast, DHA added to hippocampal slices sig-

nificantly reduced the frequency of evoked action potentials in CA1 neurons, hyper-

polarized the resting membrane potential, and raised the stimulatory threshold for 

action potential generation [32]. At lower stimulation frequencies than in the studies 

described in previous reports [30, 31], it was found that DHA does not exert actions 

on multiple spikes induced by bicuculline or in Mg2+-free medium, indicating that 

DHA does not directly interact with NMDA or non-NMDA receptors [33]. However, 

DHA may attenuate synaptic transmission and epileptiform activity in rat hippocam-

pis by frequency-dependent Na+ channel blockade [33]. Most of these electrophysi-

ologic studies have used added DHA at relatively high concentrations (e.g., 50 μm). In 

contrast, we reported that 50 nm of added NPD1 exerts potent bioactivity [21, 34–36]. 

We now propose a new approach to define the significance of DHA in epilepsy: that 

is the finding that very small amounts of systemically infused DHA elicit profound 

down-regulation of kindling-induced epileptogenesis [unpubl. observations] due to 

the fact that DHA is used as a precursor for NPD1. Brain DHA is the substrate for 

the synthesis of NPD1 in the hippocampus during kindling, and this offers a different 

explanation for the involvement of DHA in epileptogenesis.

COX-2 regulates neuronal excitability and activity-dependent induction of long-

term potentiation in the hippocampus via synthesis of prostaglandin E2 (PGE2), 

which is derived from arachidonic acid (AA) (20:4,n–6), the major omega–6 fatty 

acid in CNS cellular membranes. PGE2 increases neuronal excitability by modulating 

K+ channels, hyperpolarization-activated cation channels, and tetrodotoxin-resistant 

Na+ channels [37–39], and it facilitates back-propagation of axonal action potentials 

required for long-term potentiation [40]. COX-2 and phospholipase A2, which cleaves 
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AA (and DHA) from membrane phospholipids, become activated during kindling 

epileptogenesis, and the resulting prostaglandin synthesis is believed to mediate the 

development of aberrant neuronal connectivity [41].

Interestingly, in hippocampal synaptosomal fractions, bicuculline-induced status 

epilepticus promotes the accumulation of free (unesterified) DHA, which is also cleaved 

from membrane phospholipids by PLA2 [40]. In turn, seizures elicit the synthesis of 

NPD1, indicating activation of an auto-neuroprotective signaling after seizures that 

counteracts seizure-induced increases in COX-2 expression [unpubl. observations].

DHA in Ischemia-Reperfusion Injury

In ischemia-reperfusion injury, pathological events stemming from energy depletion 

lead to non-specific glutamate release and glutamate reuptake inhibition, intracellular 

Ca2+ overload, mitochondrial dysfunction, and generation of reactive oxygen species. 

Increases in unesterified DHA are triggered by ischemia-reperfusion injury [41–43]. 

Under these circumstances, DHA can contribute to cellular injury through its non-

enzymatic conversion to lipid peroxides. However, we showed, using a mouse model of 

ischemia-reperfusion injury, that DHA is also converted to NPD1 upon its release from 

membrane phospholipids [44]. In the presence of aspirin, DHA was converted into 

a series of 17R-hydroxy-containing DHA oxygenation products (D series resolvins), 

which possess pro-resolution bioactivity in inflammatory processes [45]. After infus-

ing exogenous NPD1 into the third ventricle of mice undergoing ischemia-reperfusion 

injury, we found a dramatic decrease in polymorphonuclear leukocyte infiltration into 

infarcted areas, and the volume of infarction was greatly reduced as compared to vehi-

cle-treated controls. These changes were associated with NPD1 attenuation of isch-

emia-induced up-regulation of COX-2 expression. In the same study [44], NPD1 was 

shown to inhibit IL-1β-mediated COX-2 expression. These findings have important 

implications for potential new experimental therapeutics for stroke, as well as other 

neurologic diseases sharing cytokine-mediated inflammatory processes.

Future Directions

In spite of all that has been discovered, many questions remain concerning DHA 

and its product NPD1. First, during situations of cellular stress, how do the retina 

and brain signal for the release of lipoproteins containing DHA from the liver? It is 

known that the liver is capable of releasing DHA when the CNS is threatened, but 

how does the CNS communicate that message to the liver (perhaps a plasma mes-

senger)? Second, it is known that certain neurotrophins induce the synthesis of NPD1 

(such as PEDF), but which receptor do they bind and how does that receptor signal 

for the release of free DHA and synthesis of NPD1? Finally, once synthesized, how 
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does NPD1 traverse the nuclear membrane in order to modulate gene expression? 
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hope to discover the answers to these and many more questions in order to harness 
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Docosahexaenoic acid (22:6,n–3, DHA), an essential marine-derived omega–3 poly-

unsaturated fatty acid, is selectively concentrated in neuronal, synaptic and retinal 

membranes. 60% of fatty acids esterified in neocortical neuronal cell membrane phos-

pholipid stores consist of DHA, so brain cells have a convenient and readily accessible 

reserve of DHA, that through phospholipase activities, liberate membrane-bound 

DHA into unesterified (free) DHA that serves in neural signaling, survival, and cell 

fate pathways. 

Stereospecific oxygenated derivatives of DHA created through lipoxygenase action 

on free DHA further generate neuroprotectin D1 (NPD1) that elicits potent cyto- and 

neuroprotective effects. The neurophysiological actions of esterified DHA occur in part 

through the maintenance of neuronal plasma membrane integrity and lipid bilayer bio-

physics. The beneficial actions of free DHA and NPD1 occur (a) through the repression 

of the induction of inflammatory signaling mediators such as the inducible cyclooxy-

genase-2 (COX-2) enzyme, (b) through the recruitment of anti-apoptotic members of 

the Bcl-2 gene family, and (c) through the repression of pro-inflammatory and pro-

apoptotic signaling genes and their translation products. DHA is essential for prenatal 

brain development and normal, homeostatic brain function. Dietary deficiencies in 

DHA are associated with retinal and neurological dysfunction and visual and cognitive 

decline. Deficits in DHA and NPD1 abundance are associated with the neurodegen-

erative mechanisms that characterize Alzheimer’s disease (AD), the leading cause of 

neurodegeneration and cognitive impairment in our society. AD exhibits a progressive 

deposition of ragged amyloid-β (Aβ) peptides derived from the β-γ secretase pathway 

that processes β-amyloid precursor protein (βAPP) into the more toxic forms of βAPP-

derived fragments. Aβ peptides themselves, and downstream consequences of Aβ pep-

tide signaling, are pro-oxidative, neurotoxic, pro-inflammatory and pro-apoptotic. 

The enzymatic generation, speciation and trafficking of βAPP and Aβ peptides in AD 
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and in experimental AD models are impacted by DHA abundance, the bioavailability 

of unesterified (free) DHA, and by derivatives of DHA such as NPD1. 

This paper will review the interplay of DHA, NPD1, βAPP and Aβ peptide-related 

oxidative mechanisms in homeostatic brain function and in the development and 

progression of AD, currently the most prevalent neurological dysfunction in aging 

Western and Asian populations.

β-Amyloid Precursor Protein, Amyloid-β Peptides, Oxidative Stress and Apoptosis 

in Alzheimer’s Disease

Significant molecular, genetic and epidemiological data support the idea that βAPP-

derived peptide- and cytokine-induced oxidative stress, and the generation of reac-

tive oxygen species (ROS), play important roles in aging and in the development and 

progression of neurodegenerative disease [1–20]. These pathogenic processes exhibit 

two key features: (a) they act in an accumulative fashion over the lifespan of the organ-

ism and (b) once begun, their deleterious effects on brain cell structure and function 

exhibit positive feedback, often perpetuating until the substrate is consumed or until 

the oxidative reactions are quenched or terminated. Mitochondrial dysfunction and 

focused oxidative damage, including primary peroxidation of cell components by ROS, 

appears to be among the earliest events in pathological aging and in the onset, develop-

ment and progression of AD [14–22]. Free radical oxidative damage to brain plasma 

membrane lipids, which contain a high proportion of DHA, is thought to be one of the 

early critical and determining events involved in initiating brain cell membrane insta-

bility, dysfunction and degeneration. A related hallmark event in AD is the evolution 

from βAPP of soluble Aβ peptides into dense, fibrous insoluble deposits of extracellu-

lar congophilic, agyrophilic, neuropathological lesions called neuritic plaques. Neuritic 

plaques accumulate in the extracellular space and around the endothelial cell walls of 

cerebral blood vessels and especially in brain microvasculature [5, 6, 9, 21, 23–27]. 

Importantly, the generation of Aβ peptide oligomers, thought to be a ‘priming’ event in 

the pathogenesis of AD, appears to precede the formation of τ-positive paired helical 

filaments in neurofibrillary tangles [23, 24, 28, 29]. The βAPP holoprotein, comprising 

the substrate of the ‘γ-secretase complex’ that consists of presenilin 1 and/or 2 (PS1/

PS2; essential components of γ-secretase) and nicastrin, gives rise to neurotoxic Aβ 

peptides 37–43 amino acids in length (Aβ37–Aβ43). The ‘γ-secretase complex’ thereby 

contains both peripheral and trans-membrane domains intimately associated with the 

lipid bilayers of neuronal lysosomal, Golgi, endoplasmic reticular and plasma mem-

branes. The interaction of DHA with specific components of the ‘γ-secretase complex’ 

is not well understood, however, DHA-induced alterations in synaptic plasma mem-

brane fluidity may contribute to learning-related memory retention in Aβ-peptide 

infused rats (see below) [23, 24, 30]. Both Aβ peptides and mature neuritic plaques 

support oxidative stress, partly through an incompletely understood direct action 
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through metal-ion induced Fenton chemistries, and indirectly through a brain-specific 

glial-mediated inflammatory response [4–17]. Aβ peptide accumulation in the cere-

bral vasculature disturbs homeostatic functions of the blood-brain barrier, alters blood 

vessel neurophysiology, obstructs regional cerebral blood flow, and generates directly 

or further facilitates the production of ROS and oxidative stresses that progressively 

contribute to neuronal dysfunction and cognitive decline [5, 8–10, 31, 32]. Peripheral 

sources of Aβ peptides and inflammatory lipids, either by transversing a damaged or 

leaky blood-brain barrier, may further contribute to Aβ peptide deposition in the AD 

brain [4, 19, 25, 26]. The presence of neuritic plaques triggers an immune attack by 

brain microglia, resulting in a robust release of microglia-derived cytokines such as 

interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and excessive local pro-

duction of ROS, actions which may in part be catalyzed by trace amounts of neurotoxic 

metal ions [1, 4, 6, 15, 17, 33, 34]. The state of aggregation and compactness of Aβ pep-

tides and maturation stage of neuritic plaques are associated with their potential for 

ROS generation and their ability to induce oxidative stress and to promote apoptotic 

signaling [5, 17, 20, 35, 36]. Apoptosis in turn is in part regulated by pro-apoptotic 

or anti-apoptotic proteins of a growing 20+ member Bcl-2 gene family [37–40]. Pro-

apoptotic members such as Bad, Bax and Bik trigger apoptosis via their translocation 

into the mitochondrial membrane while promoting loss of calcium homeostasis and 

cytochrome c release. In response to apoptotic stimuli, mitochondria can also release 

caspase-independent cell death effectors such as apoptosis inducing factor (AIF), a fla-

voprotein induced by noxious stimuli, neurotoxic metals and by the redox state of the 

cell [20, 41, 42]. In contrast, anti-apoptotic members of the Bcl-2 gene family such as 

Bcl-2, Bcl-xl and Bfl-1(A1) form heterodimeric complexes with pro-apoptotic family 

members and thereby neutralize their activity [42–44]. Imbalances between the rates of 

synthesis and clearance of Aβ peptides and their pro-inflammatory and pro-oxidative 

effects, and also between pro-apoptotic and anti-apoptotic factions of the Bcl-2 gene 

family, are therefore important contributors to the onset, development and progres-

sion of degenerative mechanisms in neurological disease. Interestingly, in both in vitro 

and in vivo studies, antioxidants have beneficial effects in reducing markers for brain 

oxidation and apoptosis, suggesting that exogenously applied bioavailable factors can 

effectively moderate neural cell destruction and be part of a useful armamentarium in 

pharmacological strategy to treat neural degeneration [20, 45–50].

Alzheimer’s Disease as an Inflammatory Brain Disease – DHA and Oxidative Stress 

While the degree to which brain inflammation plays an initiator role in AD is con-

troversial, there is abundant evidence that pathogenic inflammatory signaling con-

tributes significantly to the maintenance and progression of the AD process. The 

enhancement in AD brain of ROS, activated microglia and astrocytes, complement 

proteins, pro-inflammatory cytokines such as IL-1β and TNF-α and their association 
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with aggregated Aβ peptides and neuritic plaques suggests that early-to-late stage 

AD represents a progressive state of neural inflammation [19, 33, 34, 51–57]. A key 

genetic element that regulates the inducible generation of pro-inflammatory media-

tors, including prostaglandins, is COX-2, an oxido-reductase up-regulated in AD 

brain and a useful neocortical marker for the stage or degree of AD pathophysiologi-

cal change [4, 19, 53, 58–61]. Free radicals and major pro-inflammatory cytokines 

in the brain such as IL-1β and TNF-α strongly activate both COX-2 and βAPP gene 

transcription in cultured brain cells and in models of brain injury that involve isch-

emia-reperfusion [54–62]. Recent findings that IL-1β can substitute for key aspects of 

hypoxia-mediated oxidative stress signaling further support a strong neurochemical 

connection between up-regulation of pro-inflammatory cytokine signaling, oxidative 

stress, apoptosis and neural cell death [5–8, 63–65]. AD brain can therefore be charac-

terized biochemically by increases in the products and consequences of oxidative and 

inflammatory stress – accumulation of neurotoxic Aβ peptides, lipofuscin pigments, 

F4 neuroprostane (from non-enzymically oxidized DHA), acute phase reactants and 

other components of the complement cascade, increases in hydroxynonenol (HNE), 

decreases in membrane fluidity, and depletion of DHA content [47, 58, 66]. 

DHA exerts anti-oxidative, anti-inflammatory and anti-apoptotic actions by reduc-

ing the cellular levels of ROS, in part by suppressing pro-inflammatory mediators 

and inducible COX-2 expression, and by maintaining higher levels of anti-oxidative 

enzyme activities such as those for glutathione [67–69]. Specific increases in HNE, a 

neurotoxic free radical aldehyde of fatty acid oxidation, may be one of the earliest bio-

chemical markers for the development of AD [4–6, 65]. DHA treatment of cell cultures 

reduces HNE-induced oxidative stress and apoptosis [5, 6, 14, 65, 70]. Interestingly, 

COX-2 up-regulation in AD brain may have a direct bearing on γ-secretase activ-

ity and increased generation of amyloidogenic Aβ peptides, strengthening the path-

ological connection between brain inflammation and oxidative burden [19, 49, 50, 

71]. Combined with extensive epidemiologic studies suggesting that non-steroidal 

anti-inflammatory drugs (NSAIDs), as inhibitors of inducible COX-2 activity, retard 

AD onset or severity, these data cumulatively suggest that inflammation-mediated 

oxidative stress and/or inflammatory cascades fuelled by oxidative stress are impor-

tant factors that contribute to the progressive brain cell dysfunction and degeneration 

characteristic of AD brain [26, 33, 34, 72]. 

Therapeutic strategies aimed at effectively retarding Aβ peptide-, cytokine- and 

oxidation-induced brain cell stress are urgently needed to treat the insidious onset 

and progression of neurodegenerative disorders such as AD that have both oxida-

tive stress and inflammatory components [4, 14, 17, 18, 49, 50]. The up-regulation of 

intrinsic, anti-apoptotic neurotrophic signals represents one such strategy. As further 

described below, DHA and NPD1 biosynthesis are key elements of a potent endog-

enous signaling system that effectively counteracts Aβ peptide and IL-1β-mediated 

oxidative stress, promoting neuroprotective signaling that supports brain and retinal 

cell function and survival [19, 38, 59–61, 73–75].
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DHA in CNS Injury Oxidation and Oxygenation Pathways

As previously mentioned, DHA, the most abundant polyunsaturated fatty acid in the 

CNS, and obtained through the diet primarily from marine sources such as fish oil 

and algae, preferentially accumulates in the phospholipids of brain synaptic mem-

branes and retinal photoreceptors. In rodent and non-human primate studies dietary 

deprivation of omega–3 fatty acids must be prolonged over one generation to reduce 

DHA content in the CNS. While this remarkably tenacious retention ability suggests 

that DHA is critical for neural and visual function, specific molecular mechanisms 

through which DHA elicits these positive, supportive bioactivities are just beginning 

to become understood. DHA incorporated into nuclear membranes and DHA exog-

enously applied to human neural cells in primary culture represses the expression 

of genes related to inflammation [4, 14, 38, 59–61, 76, 77]. Alterations in membrane 

architecture, function and fluidity coupled with specific repression of pro-inflamma-

tory gene expression may contribute to the beneficial action of n–3 polyunsaturated 

fatty acids on cognition [57, 68, 69, 78]. The anti-inflammatory gene expression effects 

of DHA may arise in part through the inhibition of NF-κB-DNA binding response 

elements of the inducible nitric oxide synthase, COX-2 and other pro-inflammatory 

and/or pro-oxidative gene promoters [79–84]. 

Gene transcripts displaying changes in abundance in human fetal retinal explants 

supplemented with DHA encode for proteins involved in neurogenesis, neurotransmis-

sion, and the consolidation and refinement of synaptic connectivity [38, 85]. Because 

of the high concentration of DHA in the brain relative to other organs, DHA peroxi-

dation is a major outcome of free radical-mediated oxidative brain injury induced by 

either acute trauma or more chronically through age-related neurodegenerative mech-

anisms. ROS directly attack membrane-esterified DHA in situ, generating an array 

of damaged pathogenic lipids and oxidized DHA intermediates [5, 6, 54, 65, 86, 87]. 

Lipid peroxidation is a self-propagating and self-sustaining neurodestructive process 

capable of extensive, progressive and prolonged neural tissue damage [5, 6, 16]. DHA 

esterified into phospholipids at the carbon two position of the glycerol backbone is 

liberated by phospholipase (PLA2) to yield free DHA (fig. 1). The bioavailability of 

free unesterified DHA is a tightly regulated event and free DHA pools, normally at 

very low levels under basal conditions, become significantly increased during cerebral 

ischemia due to up-regulation of PLA2 activity [54, 60, 61, 64]. Up-regulation of PLA2 

activity is also observed in Aβ peptide- and IL-1β-stressed human neural cells in pri-

mary culture and in AD neocortex and hippocampus [15, 18, 64, 88]. 

During oxidative stress, DHA may be oxidized non-enzymatically into F4-, D4-, 

E4-, A4- and J4-neuroprostanes, prostaglandin-like compounds formed indepen-

dently of cyclooxygenase that further support oxidative stress [4, 14–16, 86, 87]. 

Synthesis of F4-neuroprostane-containing aminophospholipids may adversely affect 

neuronal function as a result of alterations they induce in the biophysical proper-

ties of neuronal plasma membranes [86, 87]. The abundance and speciation of F4 
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Fig. 1. Essentials of βAPP-Aβ peptide-DHA-NPD1 signaling, including enzymatic and non-enymatic 

processing pathways for DHA. DHA from the omega–3 essential fatty acid family preferentially accu-

mulates within neuronal and retinal phospholipids of central nervous system membranes, concen-

trating specifically within neuronal synapses and retinal photoreceptors. Free DHA derived from 

membrane DHA stores (upper) is liberated via a stringently regulated phospholipase A2 (PLA2), and 

may subsequently be converted into the 10,17S-docosatriene neuroprotectin D1 (NPD1) through an 

enzyme-mediated lipoxygenation via a 15-lipoxygenase (15-LOX) or 15-LOX-like enzymes. The neuro-

biological activity of DHA-derived NPD1 in cultured human retinal pigment epithelial and human 

neural cells has been characterized as a potent cyto- and neuroprotective oxygenated lipid mediator 

[38, 59–61, 89, 73–75, 134, 135]. Membrane DHA (lower) is also rapidly oxidized non-enzymatically by 

molecular oxygen (O2) and free radicals to form F4 neuroprostanes, a class of peroxidized lipids that 

further support oxidative stress and brain cell apoptosis leading to cellular dysfunction and cell death. 
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neuroprostanes and HNE, which reflect the general state of lipid peroxidation and 

oxidative stress, and may be useful biomarkers for the therapeutic efficacy of anti-

oxidation drugs [5, 6, 11, 14, 16, 65, 86, 87].

Alternatively, membrane-esterified DHA can be liberated and oxygenated via 

enzymatic pathways, such as by tandem PLA2-15-LOX action on free DHA, to gener-

ate the 10,17S-docosatriene or NPD1 (fig. 1). NPD1 elicits highly potent anti-oxida-

tive and neuroprotective functions in brain and retinal cells [59–61, 73–75, 89]. The 

nature of the switch from membrane disruptive to neuroprotective roles for DHA, 

such as the generation of F4 neuroprostanes versus NPD1 and other DHA-derived 

neuroprotectins, is under intense research study. Changes in the redox balance of 

brain cells, modulated in part by bioavailable antioxidants and/or neurotoxic metal 

chelators, may affect the kinetics of these DHA-processing systems [17, 20].

β-Amyloid Precursor Protein Processing, DHA and Cholesterol 

βAPP holoprotein, an ~110 kDa integral type-1 transmembrane glycoprotein and 

key player in AD neuropathology, is imbedded within lysosomal, Golgi, endoplasmic 

reticular, retinal and neuronal plasma membrane lipid bilayers, normally function-

ing in transport, intracellular contact and nuclear signaling [90–94]. βAPP can be 

sequentially processed via the β-amyloid cleavage enzyme (BACE; β-secretase), and 

subsequently by PS1/2 (γ-secretase), into ragged amyloidogenic Aβ peptides 37–43 

amino acids in length, the most neurotoxic of which appear to be Aβ40 and Aβ42 

peptides [23, 24, 95, 96]. Interestingly, the cleavage domains of βAPP targeted by β- 

and γ-secretase are membrane proximal, suggesting that βAPP-processing enzymes 

Fig. 1 Continued These non-enzymatic reactions may be quenched by specific antioxidants and free 

radical scavengers [49, 50, 86, 87, 137]. The integral membrane protein β-amyloid precursor protein 

(βAPP) gives rise to sAPPα via a neurotrophic, non-amyloidogenic, α-secretase-mediated pathway 

that stimulates both PLA2 and 15-LOX enzymes. Alternately, βAPP also generates neurotoxic Aβ pep-

tides via a β-amyloid cleavage enzyme (BACE)-presenilin 1 (PS1) amyloidogenic pathway (β-γ 

secretase pathway) [23, 24, 103, 138]. The transmembrane protein nicastrin and the sorting receptor 

sortilin-1 (SORL1) direct trafficking of βAPP, and down-regulation of SORL1 may lead to activation of 

the amyloidogenic pathway and increased generation of Aβ peptides as is observed in AD brain [88]. 

SORL-1 interacts with the type E apolipoprotein carrier (apoE) which functions in part as the major 

cholesterol transporter in the brain [38, 97, 102]. Cholesterol also increases Aβ peptide production via 

stimulation of BACE and the β-γ secretase pathway [97, 103, 139–141]. 3-Hydroxy-3-methylglutaryl-

coenzyme A reductase inhibitors (statins) both lower cholesterol and reduce intracellular and extra-

cellular abundance of Aβ peptides in primary neuronal and neuronal-glial co-cultures and in clinical 

trials [109, 142–146]. Interactions between cholesterol, statins, DHA and NPD1 are not well under-

stood although DHA supplementation in combination with statin therapy has shown significant 

health benefits in patients with hyperlipidemia, and demonstrate a further reduction of serum cho-

lesterol than by statin treatment alone [147, 148].
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operate directly at the membrane interface or within the membrane itself. The fatty 

acid composition of neuronal membranes, including DHA and cholesterol content, 

and cholesterol transporters, have direct bearing on whether βAPP is processed into 

neurotrophic or the more neurotoxic species (fig. 1) [97–102]. βAPP processing and 

Aβ peptides derived from βAPP in turn appear to be regulators of both lipid homeo-

stasis and cholesterol biosynthesis [103–106]. DHA has been reported to suppress the 

age-related Aβ peptide shedding from human neural cells in primary culture [38], to 

repress Aβ peptide-related pathology in a Tg2576 transgenic cell model of AD [68], 

and to stimulate non-amyloidogenic βAPP processing and reduce both intracellular 

and extracellular levels of Aβ peptide in SH-SY5Y cells [107]. 

The effects of DHA and cholesterol on the activity of β-γ secretase enzymes are not 

well understood but are a tremendously active area of contemporary medical research. 

Initial interest in the cholesterol-βAPP-Aβ peptide connection came from the observa-

tion that cholesterol levels were found to positively correlate with Aβ peptide load in the 

brains of AD patients [57, 101, 108]. A class of inhibitors of the rate-limiting enzyme 

in cholesterol biosynthesis 3-hydroxy-3-methylglutaryl-coenzyme A reductase, collec-

tively known as statins, have been repeatedly shown to lower serum cholesterol while 

reducing Aβ peptide abundance, both in vitro and in vivo [97, 103–109]. Cholesterol-

rich regions of neuronal membranes known as lipid rafts appear to alter the distribu-

tion of βAPP-cleaving secretases within the membrane, resulting in production of the 

more amyloidogenic species of Aβ peptides and a decreased generation of the more 

neurotrophic forms of βAPP, such as the soluble sAPPα (see below, fig. 1) [38, 101, 108, 

110, 111]. An unusual γ-secretase cleavage site within the hydrophobic trans-mem-

brane domain of βAPP suggests that pathological events which alter or disorganize 

lipid bilayer structure or fluidity contribute to Aβ40 and Aβ42 peptide generation [98, 

99, 111]. Cholesterol has significant biophysical effects on membrane lipid fluidity, cur-

vature and the translocation, orientation or positioning of the βAPP holoprotein within 

lipid raft domains [101, 106, 112]. The neuronal membrane-enriched ATP-binding 

cassette transporters ABCA1 and ABCG1 play a significant role in the regulation of 

neuronal cholesterol trafficking and efflux, and in suppression of βAPP processing to 

generate Aβ peptides, hence their role in promoting cholesterol mobility remains an 

attractive Aβ peptide-reducing strategy [100, 113, 114]. Gross disorganization of the 

lipid bilayer and aberrant processing of βAPP may be further orchestrated by peroxida-

tion of DHA, cholesterol, or by neurotoxic metal-ion catalyzed free radical damage to 

membrane lipid constituents [5, 6, 17, 20, 65]. While the interaction of cholesterol and 

statins with DHA are just beginning to become understood, DHA supplementation in 

combination with statin therapy demonstrates a significant enhancement in the reduc-

tion of serum cholesterol than is observed with statin treatment alone [cf. 147, 148].

Gene mutations in βAPP, BACE, PS1 or PS2 each drive the production of the more 

neurotoxic species of Aβ peptides but their individual contributions to neuronal plasma 

membrane dynamics and membrane biophysics remain elusive [29, 115–117]. The par-

ticularly neurotoxic peptide Aβ42, a ‘sticky’ 42-amino-acid self-aggregating peptide 
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not only supports oxidative stress by contributing directly to neuronal dysfunction, 

apoptosis and eventual cell death, but are also ‘secreted’ into the extracellular space via 

the β-γ secretase pathway to trigger extraneuronal effects that support the extracellular 

generation of ROS [23, 24, 88, 97, 103, 118, 119]. While βAPP can generate toxic Aβ 

peptides, this integral membrane glycoprotein and can be alternatively processed via a 

membrane-bound α-secretase into a soluble form of APP (sAPPα), which is neurito-

genic and neurotrophic. In fact, sAPPα supports normal neuronal function and also 

protects neurons from the toxicity of Aβ peptides [23, 24, 95, 96, 120]. A less abundant 

related protein, sAPPβ, cleaved by the proteolysis of βAPP by β-secretase, serves non-

amyloidogenic functions [38, 51, 52]. A significant portion of the neuroprotective activ-

ity of DHA may be derived not only through its support of neural and retinal plasma 

membrane integrity and function, but also through its role as substrate for the genera-

tion of other oxygenated neuroprotective molecules. The roles of DHA and NPD1 in 

the membrane-bound enzymes involved in βAPP-processing pathways are just begin-

ning to become understood. In APP/PS1 doubly transgenic mice, diets enriched in 

DHA were found to lower hippocampal Aβ peptide levels, and dietary supplementation 

with DHA in a triply transgenic AD mouse model reduced intraneuronal accumula-

tion of Aβ peptide levels via a decrease in the steady-state levels of PS1 [98, 99, and 

unpubl. observations]. DHA has been found to attenuate both Aβ40 and Aβ42 peptide 

secretion in primary human neural cells, an effect accompanied by the formation of 

NPD1 [38, 59–61]. Neurotrophins such as pigment epithelium-derived factor (PEDF) 

induce concentration-dependent DHA-mediated NPD1 synthesis in retinal pigment 

endothelial cells. DHA and PEDF appear to synergistically modify the expression of 

Bcl-2 family members by activating anti-apoptotic proteins, by decreasing pro-apop-

totic proteins, and by attenuating caspase-3 activation during oxidative stress [73–75, 

121, 122]. DHA and NPD1 also induce a gene-expression program in human primary 

neural cells that up-regulates the production of anti-apoptotic Bcl-2 family members 

such as Bcl-2 and Bfl-1 (A1) that also promote neuronal cell survival. DHA and DHA-

derived neuroprotectins are stimulated by sAPPα through up-regulation of PLA2 and 

15-LOX or 15-LOX-like activities. Specific direct actions of DHA or NPD1 on BACE 

(β-secretase) and/or PS1/PS2 (γ-secretase) activities, thereby down-regulating neuro-

toxic Aβ peptide production and subsequent ROS generation are currently not known. 

Conclusion

The primary pathogenic events that initiate neurodegenerative disorders such as AD 

are multifaceted and multifactorial. Current clinical, epidemiological, molecular-

genetic and neuropathological evidence suggests that this prototypic human neuro-

degenerative disease evolves from a complex interplay of genetic and environmental 

factors against a background of normal brain aging. Recent biochemical and epidemi-

ological evidence suggests that dietary lipids such as cholesterol and DHA are causally 
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involved in the aberrant neurochemical and physiological processes that initiate the 

neurodegenerative process [4, 10, 18, 19, 27, 39, 97, 123–127]. The hallmark patho-

logical process in AD remains the progressive condensation and aggregation of fibril-

lar Aβ peptides into neuritic plaques that support oxidative stress, pro-inflammatory 

and pro-apoptotic signaling, resulting in neuronal dysfunction and irreversible loss of 

brain cell homeostasis. Mechanisms responsible for generating Aβ peptides, and their 

neurotoxic consequences such as driving brain cell oxidation, increase with age, and 

may potentially predispose aging humans to neurological dysfunction [23, 128–130]. 

The chronic nature of AD suggests that neuroprotective and survival factors are pro-

gressively lost, switching from an up-regulation in the expression of anti-apoptotic 

factors to increases in the expression of pro-apoptotic members of the Bcl-2 gene 

family [43, 44, 131, 132]. Unlike the actions of excessive cholesterol, the neuroprotec-

tive lipid DHA, and DHA-derived NPD1, decrease the rate of AB peptide generation, 

aggregation, and its consequences. DHA and NPD1 may also influence apoptosis-

induced brain cell damage in part by shifting the balance from the expression of 

pro-apoptotic factors toward the expression of anti-apoptotic, survival-promoting 

members of the Bcl-2 gene family [38, 134–136].

Several important unanswered questions remain. The impact of DHA and NPD1 

on the secretase-mediated cleavage mechanism of βAPP is still not well characterized. 

DHA and NPD1 as potential modulators of cholesterol biosynthesis, trafficking and 

apolipoprotein-mediated transport, βAPP processing, Aβ peptide speciation, gen-

eration and secretion during aging and in cytokine- and oxidation-stressed human 

brain cell models of AD are also not well understood [38, 98]. sAPPα, a modulator of 

DHA-derived NPD1 biosynthesis in cultured human neural cells and its bioactivity 

in young, adult and aging human brain, and in areas of the brain, such as the limbic 

system and association neocortex, targeted by AD neuropathology as compared with 

the relatively spared occipital cortex, is probably an important factor in modulating 

both DHA and NPD1 signaling. Further mechanistic studies on how DHA and NPD1 

promotes neuroprotection through the up-regulation of anti-apoptotic Bcl-2 family 

proteins should further unravel how endogenously-derived lipid mediators promote 

brain cell survival that rally host defenses against oxidative stress and inflammation-

triggered neuronal decline.
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That docosahexaenoic acid (DHA), an omega–3 polyunsaturated fatty acid (PUFA), 

can affect brain function and behavior no longer is controversial: deficiencies in this 

compound are associated with impairments in cognitive development, correctable 

by its repletion [1] and the consumption of DHA or fish oil by humans reportedly 

slows cognitive decline in the aged [2] and in subjects with early Alzheimer’s disease 

[3] and promotes mental development in infants [4]. Some of DHA’s effects on brain 

have been shown to occur with ‘physiologic’ doses which raise its plasma concentra-

tions significantly but keep them within their normal range [5]; others probably are 

pharmacologic. Some are shared with eicosapentaenoic acid (EPA), another omega–3 

PUFA, or with the omega–6 fatty acid arachidonic acid (AA), and others with both or 

neither of these compounds.

In general, nutrients and drugs that modify brain function or behavior tend to do 

so by affecting synaptic transmission [6]: they modulate the quantities of particular 

neurotransmitter molecules within synaptic clefts, or act directly on the transmitter’s 

receptors or on downstream signal-transduction molecules. Is this also the case for 

DHA? Hypotheses attempting to explain how DHA affects brain function have, in 

general, been based on its incorporation into membrane phospholipids and conse-

quent effects on membrane fluidity [7]; on proteins affecting transcription (RXR [8]) 

or neurite outgrowth (syntaxin-3 [9]); on increasing phosphatidylserine (PS) pro-

duction [10]; on suppression of neuronal apoptosis [11]; or on the neuroprotective 

actions of its product 10,17S-docosatriene [12]. Little has been known concerning 

possible changes DHA might produce in synaptic transmission.



72 Wurtman · Cansev · Sakamoto · Ulus

Now it can be stated that DHA does indeed affect important components of brain 

neurotransmission: it increases the synthesis and levels of phosphatides, the main 

constituents of synaptic membranes, and of specific pre- and postsynaptic proteins 

[13, 14], and it promotes the formation of dendritic spines [15], where most excit-

atory synaptic transmission takes place. In doing these things, DHA acts in concert 

with two other circulating compounds, uridine and choline [13]. Like DHA, these 

compounds also cross the blood-brain barrier (BBB) via specific transport mecha-

nisms and also affect the substrate saturation of the enzymes that utilize them for 

synthesizing phosphatides. The effects of administering all three phosphatide precur-

sors together tend to be greater than the summed effects of giving each alone. Both 

uridine (via its product uridine-5�-triphosphate [UTP]) and DHA may also promote 

membrane phosphatide synthesis by interacting with specific neuronal proteins, such 

as the P2Y receptor for UTP [16] and syntaxin-3 for DHA [9].

This article summarizes available information concerning mechanisms by which 

DHA affects synaptic membrane levels, synapse formation, and brain neurotransmis-

sion. Because DHA’s effects on synaptic membrane depend to such a great extent on 

its interactions with brain uridine and choline, the article also describes the metabo-

lism of these compounds in some detail.

Biosynthesis of Membrane Phosphatides

All cells utilize DHA and other fatty acids, uridine, and choline to form the phos-

phatide subunits (e.g. phosphatidylcholine [PC]) (fig. 1) which, when aggregated, 

constitute the major components of their membranes. PC, the principal subunit in 

brain, is synthesized from these precursors by the cytidinediphosphocholine (CDP-

choline) cycle or ‘Kennedy cycle’ [17] (fig. 2). PC, in turn, provides the phosphocho-

line moiety for synthesizing sphingomyelin (SM), another major choline-containing 

brain phospholipid. The phosphatide phosphatidylethanolamine (PE) also is synthe-

sized via the Kennedy cycle, utilizing ethanolamine instead of choline, while the third 

major structural phosphatide, PS, is produced by exchanging a serine molecule for 

the choline in PC or the ethanolamine in PE [18].

CH3
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Fig. 1. Structure of phosphati-

dylcholine.
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The CDP-choline cycle involves three sequential enzymatic reactions (fig. 2). In the 

first, catalyzed by choline kinase (CK), a monophosphate is transferred from ATP to 

the hydroxyl oxygen of the choline, yielding phosphocholine. The second, catalyzed 

by CTP:phosphocholine cytidylyltransferase (CT), transfers cytidylylmonophosphate 

(CMP) from cytidine-5�-triphosphate (CTP) to the phosphorus of phosphocholine, 

yielding cytidylyldiphosphocholine (also known as CDP-choline or as citicoline). 

As discussed below, much of the CTP that the human brain uses for this reaction 

derives from circulating uridine [19]. The third and last reaction, catalyzed by CDP-

choline:1,2-diacylglycerol cholinephosphotransferase (CPT), bonds the phosphocho-

line of CDP-choline to the hydroxyl group on the 3-carbon of diacylglycerol (DAG), 

yielding the PC. All three precursors of PC must be obtained entirely or in large part 

from the circulation, and because the PC-synthesizing enzymes that act on all three 

have low affinities for them, blood levels of all three can affect the overall rate of PC 

synthesis [13, 20].

Thus, choline administration increases brain phosphocholine levels in rats [21] and 

humans [22], because CK’s Km for choline (2.6 mm [23]) is much higher than usual 

Uridine

Cytidine

deaminase

CTP

synthase
CTP     �     Phosphocholine

DAG       �      CDP- choline

Phosphatidylcholine

CT
PUFA

(DHA, EPA, AA)

CPT

Cytidine

Choline

CK

UTP

Fig. 2. Phosphatidylcholine (PC) biosynthesis via the Kennedy cycle [17]. In rats, cytidine is the major 

circulating pyrimidine [95]; in humans [19] and gerbils [20] the primary circulating pyrimidine is uri-

dine. Only small amounts of circulating cytidine are converted to brain CTP, since the blood-brain 

barrier (BBB) high-affinity transporter for pyrimidines (CNT2) has a very low affinity for cytidine [96–

98]; uridine, in contrast, readily enters the brain via CNT2, yielding UTP which can be converted to 

CTP by CTP synthase [89]. CTP then reacts with phosphocholine to form CDP-choline, which com-

bines with diacylglycerol (DAG), preferentially species containing PUFAs like DHA, EPA or AA to form 

PC. Boxes indicate the compounds that are obtained from the circulation. Synthesis of PE via the 

Kennedy cycle utilizes ethanolamine instead of choline [data from 14].
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brain choline levels (30–60 μm) [24–26]. Most commonly the second, CT-catalyzed 

reaction is most rate-limiting in PC synthesis, either because not all of the CT enzyme 

is fully activated by being attached to a cellular membrane [27] or because local CTP 

concentrations are insufficient to saturate the CT [26]. Thus, when brain CTP levels are 

increased by giving animals uridine [20], CTP’s circulating precursor in human blood 

[19], PC synthesis is accelerated [20]. The activity of CPT and the extent to which 

this enzyme is saturated with DAG can also control the overall rate of PC synthesis, 

as has been shown, for example, in permeabilized HeLa cells exposed to glycerol-3-

phosphate and acyl-CoA [28], or in PC12 cells extending neurites after exposure to 

the nerve growth factor (NGF) [29]: in PC-12 cells, NGF increased DAG levels 5-fold, 

CPT activity by 70%, and the incorporation of choline into PC by 2-fold. As discussed 

below, DAG species containing DHA or other PUFAs on the middle carbon appar-

ently are preferentially utilized for phosphatide synthesis compared with the amounts 

utilized for producing triglycerides [30]. (This does not explain, of course, why giving 

DHA and presumably increasing levels of DHA-containing DAG would also increase 

the levels of PC in a cell, e.g. in table 1).

If rodents are given a standard diet that also contains both choline and uridine (as 

its monophosphate, UMP) and, by gavage, DHA, brain PC synthesis rapidly increases 

[13, 20], and absolute levels of PC per cell (DNA) or per mg protein increase sub-

stantially (e.g., by 40–50% after several weeks of daily treatment [13] (table 1). This 

treatment also increases the levels of each of the other principal membrane phos-

phatides (table 1), as well as those of particular proteins known to be localized within 

synaptic membranes (for example, synapsin-1 [31], PSD-95 [32] and syntaxin-3 [9]), 

but not the ubiquitously-distributed brain protein β-tubulin (fig. 3) [13, 14]. As dis-

cussed below, treatment with DHA, UMP and choline also promotes the formation 

of dendritic spines in adult gerbil hippocampus [15] (see section 6), and improves 

hippocampus-dependent cognitive behaviors in rats reared in a socially-deprived 

Table 1. Effects of UMP-containing diet and/or DHA on brain phospholipid levels [data from 13]

Treatments Total PL PC PE SM PS PI

Control diet + Vehicle 351 152 65 45 33 21

UMP diet + Vehicle 367 171* 84* 52 35 31**

Control diet + DHA 392 185* 78* 56* 39 32**

UMP diet + DHA 442*** 220*** 113*** 73*** 46*** 36***

Groups of 8 gerbils were given either a control or a UMP-containing (0.5%) diet, and received orally 

(by gavage) DHA (300 mg/kg; in a vehicle of 5% gum Arabic solution) or just its vehicle for 28 days. 

On the 29th day their brains were harvested and assayed for phospholipids. *p < 0.05; **p < 0.01, 

and ***p < 0.001 compared with values from Control diet + Vehicle group. Data are presented as 

nmol/mg protein.
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Fig. 3. Effects of AA, DHA or EPA, alone or in combination with a UMP-supplemented diet, on levels 

of the pre- or postsynaptic proteins PSD-95 (a1, a2); synapsin-1 (b1, b2) and syntaxin-3 (c1, c2). CV = 

Control diet + vehicle; CA = control diet + AA; CD = control diet + DHA; CE = control diet + EPA; UV = 

UMP-supplemented diet + vehicle; UA = UMP-supplemented diet + AA; UD = UMP-supplemented 

diet + DHA; UE = UMP-supplemented diet + EPA. *p < 0.05; **p < 0.01, and ***p < 0.001 compared 

with CV, and ap < 0.05 compared with CA on the left-sided columns (a1, b1, c1) using one-way 

ANOVA. *p < 0.05; **p < 0.01, and ***p < 0.001 compared with UV, and xp < 0.05 and yp < 0.01 com-

pared with UA on the right-sided columns (a2, b2, c2) using one-way ANOVA [data from 14].
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environment [33] (see section 7). Thus, the production, levels, and functional proper-

ties of PC, other phosphatides, and proteins in brain membranes, are found to depend 

to a surprising extent on blood levels of PC’s three circulating precursors. Providing 

supplemental UMP or DHA without the other also increases brain phosphatide levels, 

but by less than when all three precursors are presented. (Choline is included in all of 

the diets.)

In studies designed to affirm that the increases in brain phosphatide levels caused 

by giving DHA, with or without UMP, reflect actual increases in phosphatide syn-

thesis (and not, for example, inhibition of phosphatide degradation), brain levels 

of CDP-choline and CDP-ethanolamine, the immediate precursors of PC and PE, 

have also been measured. It was postulated that if DHA acted by generating more 

DHA-containing DAG, and if this compound then combined with endogenous CDP-

choline or CDP-ethanolamine to form additional PC or PE, then DHA administra-

tion might concurrently reduce brain CDP-choline and CDP-ethanolamine levels 

while increasing those of PC and PE. This expectation was confirmed [13] among 

animals receiving DHA, or DHA + UMP; CDP-choline and CDP-ethanolamine levels 

fell significantly while those of PC and PE rose (fig. 4).
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Fig. 4. Effects of DHA on brain 

CDP-choline or CDP-

ethanolamine levels. Groups 

of 8 gerbils received either a 

control or a UMP-containing 

(0.5%) diet and, by gavage, 

DHA (300 mg/kg; in a vehicle 

of 5% gum Arabic solution) or 

just its vehicle, for 28 days. On 

the 29th day their brains were 

harvested and assayed for (a) 

CDP-choline or (b) CDP-

ethanolamine. ap < 0.05 and 
cp < 0.01 when compared with 

the values for control diet + 

vehicle group; bp < 0.05 when 

compared with values for UMP 

diet + vehicle group [data 

from 13].
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Properties of the Enzymes That Mediate Brain Phosphatide Synthesis

As discussed above, the ability of each of the circulating phosphatide precursors to 

affect the overall rate of phosphatide synthesis results from the relatively low affinities 

of these enzymes for their substrates. This unusual property is discussed below.

Choline Kinase 

The synthesis of PC (fig. 2) is initiated by the phosphorylation of choline, in which, as 

described above, CK (EC 2.7.1.32) catalyzes the transfer of a monophosphate group 

from ATP to the hydroxyl oxygen of the choline. In some neurons choline is also used 

for synthesizing the neurotransmitter acetylcholine (ACh), a process catalyzed by cho-

line acetyltransferase (ChAT), which mediates the transfer of an acetyl group from 

acetyl-CoA to the hydroxyl oxygen of the choline. The ACh is then stored, largely 

within synaptic vesicles, for future release. Like CK, ChAT has a very low affinity for its 

choline substrate [34, 35]. The Km’s of these enzymes in brain (which describe the cho-

line concentrations at which the enzymes operate at only half-maximal velocity) are 

reportedly 2.6 mm [23] and 540 μm [36], respectively, whereas brain choline levels are 

only about 30–60 μm [24–26]. Hence, the rates of both phosphocholine and ACh syn-

thesis are highly responsive to treatments which raise or lower brain choline levels.

The ability of choline administration to increase the synthesis and brain levels of 

phosphocholine was first noted in 1982 [21] and its similar effect on ACh in 1975 [37, 

38]. It had previously been shown that the production of another brain neurotrans-

mitter, serotonin, was increased among animals receiving physiologic doses of its cir-

culating precursor, tryptophan [39, 40]. This was shown to be because tryptophan 

hydroxylase, the enzyme that determines the overall rate at which tryptophan is con-

verted to serotonin, has a very low affinity for this substrate. Inasmuch as the affini-

ties for choline of CK and ChAT had also been found, in in vitro studies, to be low, it 

seemed reasonable to enquire as to whether choline availability could also control the 

syntheses of phosphocholine or ACh.

Even though brain choline concentrations shared with those of tryptophan the 

ability to control the rates at which the precursor is used for neurotransmitter syn-

thesis, choline and tryptophan differed in an important respect: although both are 

used by certain neurons for two purposes – tryptophan for conversion to serotonin 

and incorporation into proteins, and choline for conversion to ACh and incorpora-

tion into phospholipids – in the case of tryptophan these two processes are segre-

gated into different parts of the neuron, the nerve terminal and perikaryon, whereas 

for choline both can take place within the nerve terminal inasmuch as that structure 

contains both ChAT and CK. Hence, the acetylation and phosphorylation of choline 

sometimes compete for available substrate [41, 42]: When cholinergic neurons are 

forced to fire frequently and maintain the rapid release of ACh, choline’s incorpora-

tion into PC decreases [41] and the breakdown of membrane PC increases (‘autocan-

nibalism’), liberating additional choline for ACh synthesis [43–45]. However, when 
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the utilization of choline to form PC is increased (by providing supplemental uridine 

and an omega–3 fatty acid, as described above), ACh synthesis is not diminished, 

probably because so little choline is used in cholinergic neurons for phosphatide for-

mation, relative to the amount needed for ACh synthesis [42].

CTP: Phosphocholine Cytidylyltransferase

CTP: phosphocholine cytidylyltransferase (CT; EC 2.7.7.15) catalyzes the condensa-

tion of CTP and phosphocholine to form CDP-choline (fig. 2). CT is present in both 

the soluble and particulate fractions of the cell [46]; the cytosolic form is reportedly 

inactive and the membrane-bound form active [27, 47]. Increases in the associa-

tion of CT with membranes reportedly correlate with increases in CT activity and in 

the net synthesis of PC in vitro [48–50]. Some other lipids (e.g. PS) [51] and DAG 

[48, 52] also stimulate the translocation of CT from the cytosol to membranes in 

vitro, thereby activating the enzyme. However, translocation is clearly not the sole 

mechanism for CT activation, inasmuch as increases in the activity of membrane-

bound CT often do not correlate with decreases in that of the cytosolic enzyme [53] 

(as would be expected if translocation were the only means whereby CT become 

activated). The phosphorylation state of CT may also be important [54] as well as 

the enzyme’s substrate saturation with CTP and perhaps with phosphocholine, as 

described below.

CT has been purified to homogeneity [55], and has been cloned from rat liver 

[56] and from a human erythroleukemic cell line [57]. The purified form exists as an 

elongated dimer [58]. Mammalian CT proteins contain four functional domains: an 

N-terminal nuclear targeting sequence, a catalytic domain, a membrane-lipid bind-

ing domain, and a C-terminal phosphorylation domain. The Km’s of CT for CTP and 

phosphocholine in brains of laboratory rodents and humans are reportedly 1–1.3 mm 

and 0.30–0.31 mm [26, 59], respectively, while brain levels of these compounds are 

only 70–110 μm [20, 60, 61] and 0.32–0.69 mm [21, 25, 62] respectively. Hence, brain 

CT normally is highly unsaturated with CTP, and only about half-saturated with 

phosphocholine in vivo, suggesting that its degrees of substrate saturation, particu-

larly with CTP, exert important limiting roles in PC synthesis. In fact, treatments that 

increase cellular CTP (e.g. administration of a uridine or cytidine source) have been 

shown to enhance CDP-choline and PC synthesis in poliovirus-infected HeLa cells 

[63]; undifferentiated PC12 cells [64, 65]; slices of rat corpus striatum [66], and gerbil 

brain in vivo [20].

CDP-Choline: 1,2-Diacylglycerol Cholinephosphotransferase

CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT; EC 2.7.8.2) cata-

lyzes the final reaction in the Kennedy cycle; it transfers the phosphocholine moiety 

from CDP-choline to DAG, thus yielding PC (fig. 2). CPT, an integral membrane 

protein, is present primarily in the endoplasmic reticulum [67]. The enzyme protein 

has been solubilized and partially purified from microsomes of rat liver [68, 69], rat 
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brain [70] and hamster liver [71]. A human cDNA has been isolated which codes for 

an enzyme with both cholinephosphotransferase and ethanolamine-phosphotrans-

ferase (EPT) activities (hCEPT1 [72]), and a different human cDNA has also been 

isolated, the product of which exhibits only cholinephosphotransferase-specific activ-

ity (hCPT1 [73]). CPT may be a reversible enzyme, synthesizing CDP-choline from 

PC and CMP in microsomal preparations from liver [74, 75] or brain [76–78].

The choline phosphotransferase reaction also is unsaturated with the enzyme’s 

substrates: its Km values for CDP-choline and DAG in rat liver are 200 and 150 μm 

[79] respectively, while the concentrations of these compounds in liver are approxi-

mately 40 μm [80] and 300 μm [81]. (A DAG concentration of at least 1,000 μm thus 

would probably be needed to saturate the enzyme.) Brain CDP-choline and DAG lev-

els are even lower, i.e., about 10–30 μm [20, 82] and 75 μm [61], respectively. Levels 

of cellular DAG have been shown to limit PC synthesis in permeabilized HeLa cells 

[28], cultured rat hepatocytes [83], and PC12 cells (described above) [29]. None of 

these studies distinguished between the enzyme which acts on both choline and etha-

nolamine (PECT1) and the enzyme that acts only on choline (PCT1). A more recent 

report, using cloning and expression methods, described the Km of human PECT1 

for CDP-choline, as being 36 μm [84], which would probably still be too high for 

the enzyme to be saturated with this substrate in brain. The Km of PCT for its sub-

strates might also be affected by the fatty acid composition of the DAG molecule; 

for example, incubating mouse liver microsomes with DAG molecules that contained 

two oleic acids (1,2-dioleoyl-sn-glycerol [Di-C18:1 (cis-9)]) rather than two palmitic 

acids (1,2-dipalmitoyl-sn-glycerol [Di-C16:0]), increased its Km’s for DAG from 86 ± 

6 to 1,860 ± 39 μm and its Km for CDP-choline from 41 ± 2 to 1,000 ± 141 μm [85]. 

Hence the enzyme’s affinity for its substrates declined by 20- to 25-fold. Apparently 

no data are available demonstrating that fatty acids (e.g., DHA) most able to promote 

PC synthesis [86] do so because they enhance cellular levels of DAG species which 

CPT binds most effectively or on which it has greatest catalytic activity.

Uptake of Uridine into Brain and Its Conversion to UTP and CTP

Since brain uridine can, by elevating CTP levels, modulate the effect of DHA on syn-

aptic membrane formation, the enzymes and uptake proteins that mediate blood uri-

dine’s effect on brain CTP are discussed here.

Uridine and cytidine are transported across cell membranes, including the BBB, 

via two families of transport proteins, i.e. the Na+-independent, low-affinity, equili-

brative transporters (ENT1 and ENT2) [87] and the Na+-dependent, high-affinity, 

concentrative (CNT1, CNT2, and CNT3) [88] nucleoside transporters [89]. The two 

ENT proteins, which transport uridine and cytidine with similar affinities, have been 

cloned from rat [90] and mouse [91]. Inasmuch as their Km values for the pyrimi-

dines are in the high micromolar range (100–800 μm [92]) they probably mediate 

BBB pyrimidine uptake only when plasma levels of uridine and cytidine have been 

elevated experimentally. In contrast, CNT2, which transports both the pyrimidine 
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uridine and such purines as adenosine, probably do mediate uridine transport 

across the BBB under physiologic conditions. Km values for the binding of uridine 

and adenosine to this protein (which has been cloned from rat BBB [93]) are in the 

low micromolar range (9–40 μm in kidney, intestine, spleen, liver, macrophage and 

monocytes [94]), while plasma uridine levels are subsaturating, i.e. 0.9–3.9 μm in rats 

[95], 3.1–4.9 μm in humans [95], and around 6.5 μm in gerbils [20]. Cytidine has not 

been thought to be a substrate for CNT2 [88], however recent studies suggest that 

CNT2 can also transport this compound, but with a much lower affinity than that for 

uridine [96–98].

It should be noted that, while both of the pyrimidines, uridine and cytidine, are 

present in the blood of laboratory rats, human blood contains unmeasurably low 

quantities of cytidine [95] even among individuals consuming a cytidine source like 

oral CDP-choline [19]; the cytidine is quantitatively deaminated to uridine in the 

human liver. Hence circulating uridine, and not cytidine, is the precursor of the brain 

CTP utilized for phosphatide synthesis. Gerbil blood contains both pyrimidines, 

but proportionately less cytidine than blood of rats; hence, gerbils are often used as 

a model for studying the effects of exogenous uridine sources on the human brain 

[99].

Like other circulating compounds, pyrimidines may also be taken up into brain via 

the epithelium of the choroid plexus (CP) and the ENT1, ENT2 and CNT3 transport-

ers [87, 88]; all of these proteins have been found in CP epithelial cells of rats [90, 100, 

101] and rabbits [102, 103]. However, the surface area of BBB is probably 1,000 times 

that of the CP epithelium (i.e., 21.6 vs. 0.021 m2 in humans [104]), hence the BBB is 

the major locus at which circulating uridine enters the brain.

Uridine and cytidine are converted to their respective nucleotides by succes-

sive phosphorylations catalyzed by various kinases. Uridine-cytidine kinase (UCK) 

(ATP:uridine 5�-phosphotransferase, EC 2.7.1.48) phosphorylates uridine and cyti-

dine to form UMP and CMP, respectively [105–107]. Several different forms of 

UCK exist, possibly as isoenzymes [108, 109]. Humans have two such isoenzymes, 

UCK1 and UCK2, both of which have been cloned [110, 111]. UMP-CMP kinase 

(UMP-CMPK) (ATP:CMP phosphotransferase, EC 2.7.4.14) [112–114] then con-

verts UMP or CMP to UDP or CDP. These nucleotides in turn are further phospho-

rylated to UTP and CTP, by nucleoside diphosphate kinases (NDPK) (nucleoside 

triphosphate:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) [115, 116]. 

mRNAs for UCK1 [111] and UMP-CMPK [117] have been described in brain [118, 

119], as has NDPK activity.

Various interconversions between uridine and cytidine, and between their respec-

tive nucleotides, are known to occur in mammalian cells. Cytidine and CMP can be 

deaminated to uridine and UMP [120], while UTP is aminated to CTP by CTP syn-

thase (UTP:ammonia ligase [ADP-forming], EC 6.3.4.2) [121, 122]. This enzyme acts 

by transferring an amide nitrogen from glutamine to the C-4 position of UTP, thus 

forming CTP [123]. CTP synthase activity has been demonstrated in rat brain [124].
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All of the enzymes described above apparently are unsaturated with their respec-

tive nucleosides or nucleotides in brain and other tissues. For example, the Km’s for 

uridine and cytidine of UCK prepared from various tissues varied between 33 and 

270 μm [106, 107, 125, 126], and the Km for uridine of recombinant enzyme cloned 

from mouse brain was 40 μm [127, 128]. Brain uridine and cytidine levels are about 

22–46 pmol/mg wet weight [20, 129] and 6–43 pmol/mg wet weight [20, 130], respec-

tively. Hence, the syntheses of UTP and CTP, and the subsequent syntheses of brain 

PC and PE via the Kennedy pathway, depend on available levels of their pyrimidine 

substrates. Indeed, increasing the supply of uridine or cytidine to neuronal cells, in 

vitro [16, 65, 66] or in vivo [20, 99], enhanced the phosphorylation of uridine and 

cytidine, and elevated levels of UTP, CTP, and CDP-choline.

Availability of DHA and Other PUFAs to Brain Cells

As discussed extensively elsewhere in this volume, the omega–3 PUFAs DHA and 

EPA, and the omega–6 fatty acid AA are essential for humans and other animals, and 

thus must be obtained from the diet either as such or as their also-essential precur-

sors, α-linolenic acid (ALA) and linoleic acid (LA).

Although the processes by which circulating PUFAs are taken up into the brain 

and, subsequently, into brain cells await full characterization, they are thought to 

include both simple diffusion (also termed ‘flip-flop’ [131]) and protein-mediated 

transport [132]. One such transport protein (B-FATP) [133] has been cloned [134]. 

DHA, EPA and AA are then transported from the brain’s ECF into cells, and can be 

activated to their corresponding CoA species (e.g., docosahexaenoyl-CoA; eicosap-

entaenoyl-CoA; arachidonoyl-CoA) and acylated to the sn-2 position of DAG [135] 

to form PUFA-rich DAG species [136, 137]. DHA is acylated by a specific acyl-CoA 

synthetase, Acsl6 [138] which exhibits a low affinity for this substrate (Km = 26 μm 

[139] relative to usual brain DHA levels (1.3–1.5 μm) [140]). Hence, treatments that 

raise blood DHA levels rapidly increase its uptake into and retention by brain cells.

EPA can be acylated to DAG by the Acyl-CoA synthetase [141] or it can be con-

verted to DHA by brain astrocytes [142], allowing its effects on brain phosphatides 

and synaptic proteins, described below, to be mediated by DHA itself. Exogenously 

administered AA, like DHA, is preferentially incorporated into brain phosphatides 

[143, 144], as well as into other lipids, e.g. the plasmalogens [145, 146]. AA shares 

with DHA the ability to activate syntaxin-3 [9], however, as described below, its oral 

administration to laboratory rodents apparently does not promote synaptic mem-

brane synthesis nor dendritic spine formation.

DHA and AA are major components of brain membrane phospholipids [147]. 

While AA is widespread through the brain and is abundant in phosphatidylinosi-

tol (PI) and PC, DHA is concentrated in synaptic regions of gray matter [148] and 

is especially abundant in PE and PS [149]. In contrast, EPA is found only in trace 



82 Wurtman · Cansev · Sakamoto · Ulus

amounts in brain phosphatides, mostly in PI [150]. No significant differences have 

been described between the relative proportions of ingested omega–3 and omega–6 

PUFAs that actually enter the systemic circulation [151, 152]. Moreover, the rates at 

which radioactively-labeled DHA and AA are taken up into brain and incorporated 

into phospholipids following systemic injections also are similar [143, 153]. (To our 

knowledge, no study has compared the brain uptake of EPA with that of another PUFA 

in rodents or humans, however exogenously administered EPA does increase brain 

EPA levels in vivo [154].) On the other hand, the half-lives of the omega–3 PUFAs in 

the blood (20 ± 5.2 h for DHA and 67 ± 14 h for EPA [155]) are substantially higher 

than that for AA (3.8 s [156]). Similarly, the half-life of DHA in brain PC (22.4 ± 2.9 

h), but not in PI or PE, is much longer than that of AA (3.79 ± 0.12 h) [157]. Thus, a 

considerable proportion of AA may be cleared from plasma or oxidized before it is 

utilized for PC synthesis, or, once incorporated into phosphatides, may be liberated 

by hydrolysis (mediated by phospholipase A2 [158]), and then oxidized. 

It should be noted that the ability of orally-administrated DAG, given daily for 

several weeks, to increase brain phosphatide levels does not necessarily imply that, 

concurrent with such increases, the quantities of DHA in the phosphatides, relative to 

those of other fatty acids, also are increased. Indeed this has not been demonstrated.

Effects of DHA and Other PUFAs on Synaptic Protein and Phosphatide Levels in 

Gerbils

In experiments designed to compare the effects of administering each of the three 

PUFAs, DHA, EPA, or AA, on brain phosphatide levels, animals received 300 mg/kg 

daily by gavage of one of the fatty acids for 4 weeks, with or without dietary UMP and 

with choline as noted previously. Giving DHA without uridine increased PC, PI, PE 

and PS levels significantly, by 18, 20, 22, and 28% respectively (table 2), throughout 

the brain (e.g. in cortex, striatum, hippocampus, brain stem and cerebellum) (table 

3). Giving EPA also increased brain PE, PS, and PI levels significantly, by 21, 24 and 

27%, respectively (table 2). In contrast, AA administration failed to affect brain levels 

of any of the phosphatides (table 2) [14].

Consuming the UMP-supplemented diet alone increased brain PS and PC levels 

significantly (by 15 and 16%, respectively) (table 2) compared with those in control 

gerbils. Among gerbils receiving both UMP and DHA, brain PC, PE, PS, and PI levels 

rose significantly by 12, 26, 34, and 38%, respectively (table 2). Similarly, among ger-

bils receiving both UMP and EPA, brain PC, PE, PS, and PI levels rose significantly 

by 13, 30, 41 and 56%, respectively (table 2). In contrast, giving UMP with AA failed 

to increase levels of any brain phosphatide above those found in gerbils receiving 

UMP alone (table 2). Total brain phospholipid levels were also elevated significantly, 

by 16 and 23% following treatment with UMP + DHA, or with UMP + EPA, respec-

tively (table 2), but not by treatment with UMP + AA [14]. Essentially similar results 
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were obtained whether data were expressed per μg DNA or per mg protein (data not 

shown).

Giving gerbils, as above, DHA or EPA alone significantly increased brain levels of 

the postsynaptic density protein PSD-95, by 24 or 28% (fig. 3a1). When this treatment 

was combined with dietary UMP the observed increases in PSD-95 were 29 or 33% 

greater than those found after UMP supplementation alone (fig. 3a2). AA failed to 

affect brain PSD-95 levels either when given alone or in combination with the UMP-

supplemented diet (fig. 3a). Similar to PSD-95, levels of synapsin-1, a presynaptic 

vesicular protein, were also significantly increased, by 31 or 27% respectively, by DHA 

or EPA treatment alone (fig. 3b1) or by 33 or 36% when the PUFA was combined with 

Table 2. Effects of various PUFAs, given with a control diet (a) or a UMP-supplemented diet (b), on gerbil 

brain phosphatide levels [data from 14]

a      

Total PL PC PE PS PI

Control diet + Vehicle 322 113 63 251 15

Control diet + AA 326 114 65 281 16 

Control diet + DHA 344 133* 77* 32*** 18*

Control diet + EPA 347 125 76* 31** 19**, a

UMP diet1 + Vehicle 332 131* 701 29* 16

Groups of gerbils were given a control diet, and received by gavage AA, DHA, or EPA (each 300 mg/kg; in a 

vehicle of 5% gum Arabic solution) or just its vehicle for 28 days. On the 29th day their brains were har-

vested and assayed for phosphatides as described in the text. Data are given as means ± SEM. *p < 0.05; 

**p < 0.01, and ***p < 0.001 compared to Control diet + Vehicle group, and ap < 0.05 compared to Control 

diet + AA group by one-way ANOVA.
1Data from gerbils receiving the UMP diet but no PUFAs are included in table 2a to illustrate that uridine 

alone also affects phosphatide levels. Data are presented as nmol/mg protein.

b      

Total PL PC PE PS PI

UMP diet + Vehicle 332 131 70 29 16 

UMP diet + AA 379 132 81 31 20 

UMP diet + DHA 384* 147**, y 88** 39** 22**

UMP diet + EPA 407*** 148**, y 91*** 41**, x 25***

Groups of gerbils were given a UMP-containing (0.5%) diet, and received by gavage AA, DHA, or EPA (each 

300 mg/kg; in a vehicle of 5% gum Arabic solution) or just its vehicle for 28 days. On the 29th day their brains 

were harvested and assayed for phosphatides as described in the text. Data are given as means ± SEM. *p < 

0.05; **p < 0.01, and ***p < 0.001 compared to Control diet + Vehicle group, and xp < 0.05 and yp < 0.01 com-

pared to UMP diet + AA group by one-way ANOVA.
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UMP (fig. 3b2). Again, AA failed to affect brain synapsin-1 levels when given alone or 

in combination or concurrently with a UMP-supplemented diet (fig. 3b).

Also similarly to PSD-95 and synapsin-1, brain levels of syntaxin-3, a plasma mem-

brane SNARE (soluble N-thylmaleimidesensitive-factor attachment protein receptor) 

protein which reportedly mediates the stimulation by PUFAs of neurite outgrowth [9], 

and exocytosis [159], in cultured cells, were significantly increased in animals receiv-

ing DHA or EPA by 29 or 19%, respectively (fig. 3c1); whether or not they also received 

UMP, but AA was without effect alone or in combination with UMP (fig. 3c).

None of the PUFA, given alone or with UMP, changed brain levels of the structural 

protein β-tubulin, perhaps reflecting its ubiquity in brain; hence, β-tubulin was used 

as the loading control for Western blot assays of synaptic proteins (fig. 3d).

The mechanism that allows the omega–3 fatty acids DHA and EPA, but not the 

omega–6 fatty acid AA to increase synaptic membrane is unclear. As discussed above, 

exogenously administered AA, like DHA, is preferentially incorporated into brain 

phosphatides [143, 144], as well as into other brain lipids (e.g. the plasmalogens [145, 

146]), and AA shares with DHA the ability to activate syntaxin-3 in vitro [9].

Table 3. Effects of giving UMP-supplemented diet (0.5%) and DHA (300 mg/kg) on phosphatide 

levels in different gerbil brain regions [data from 14] 

Cortex Striatum Hippocampus Brain Stem Cerebellum

Total PL      

 Control diet + Vehicle 267 265 264 450 270

 UMP diet + DHA 316** 339*** 314** 521** 317**

PC

 Control diet + Vehicle 94 100 102 114 98 

 UMP diet + DHA 122*** 126* 117*** 139*** 111***

PE

 Control diet + Vehicle 58 60 61 117 64

 UMP diet + DHA 80** 85*** 81*** 156*** 85***

PS

 Control diet + Vehicle 24 24 24 30 24

 UMP diet + DHA 30*** 29* 28*** 35*** 29**

PI

 Control diet + Vehicle 10.6 7.6 8.8 9.3 10.4

 UMP diet + DHA 13.2** 11.9*** 11*** 11.8* 11.5*

Groups of gerbils were given a UMP-containing (0.5%) diet and, received by gavage, DHA (300 mg/

kg; in a vehicle of 5% gum Arabic solution) or just the vehicle, for 28 days. On the 29th day various 

brain regions were harvested and assayed for phosphatides as described in the text. Data are pre-

sented as nmol/mg protein. *p < 0.05; **p < 0.01, and ***p < 0.001 compared to Control diet + 

Vehicle group using Student’s t test.
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Mechanisms that could underlie the differential effects of omega–3 and omega–6 

PUFAs on membrane synthesis might include, among others, different efficacies for 

their uptakes into brain or their acylation; different half-lives in the circulation; dif-

ferent affinities for enzymes that control their incorporation into DAG and phos-

phatides (apparently not the case [14]; differences in the rates at which the PUFAs 

are removed from phosphatides by deacylation; the differential activation of genes 

encoding proteins needed for membrane synthesis [5], or the tendency of AA to be 

incorporated into phospholipids by the acylation of 1-acyl-2-lyso-snglycerophospho-

lipids, not via the Kennedy cycle [160].

Effects of DHA and Other PUFAs on Dendritic Spine Formation and Synaptogenesis

Dendritic spines are small membranous protrusions extending from postsynap-

tic dendrites in neurons most of which eventually form synapses with presynaptic 

axon terminals. The dendritic spines compartmentalize postsynaptic responses, 

and their numbers are thought to reflect the density of excitatory synapses within 

regions of the central nervous system [161–163]. Oral supplementation with DHA 

to adult gerbils increases the number of dendritic spines in the hippocampus, par-

ticularly if the animals are also supplemented with UMP (fig. 5). This effect is asso-

ciated with parallel increases in levels of membrane phosphatides and of various 

pre- and postsynaptic hippocampus proteins, as described above. Oral DHA may 

thus increase the number of brain synapses, particularly when co-administered 

with UMP [15].

Gerbils that received daily doses of DHA for 4 weeks (100 or 300 mg/kg, by gav-

age) exhibited increased dendritic spine density (i.e. the number of spines per length 

of dendrite) in CA1 pyramidal neurons (fig. 6); the increases were 12% (p = 0.04) 

with the 100 mg/kg/day dose, and 18% (p < 0.01) with the 300 mg/kg/day dose. 

These effects were amplified when gerbils received both DHA (300 mg/kg/day, by 

gavage, as above) and UMP (0.5%, via the standard choline-containing diet) for 4 

weeks, DHA supplementation alone increasing spine density by 19% (p < 0.04; fig. 

5) and administration of both precursors did so by 36%, or approximately double 

the increase produced by DHA alone (p = 0.008) (fig. 5). (Giving UMP alone did 

not affect dendritic spine density significantly (fig. 5), however it did increase spine 

density when all dendritic protrusions were included for statistical analysis, includ-

ing the filopodia, which are precursor forms of dendritic spines.) The effect on den-

dritic spine density of giving both DHA and UMP was already apparent after 1 week 

of treatment (p = 0.02), and continued for as long as animals were treated (4 weeks) 

(fig. 5). DHA + UMP did not affect the length nor width of individual dendritic 

spines, only their number.

In the above experiments the increases in hippocampal phospholipids after DHA 

alone were: PC 8%, PE 26%, PS 75%, and PI 29% (all p < 0.5 except for PC), and after 
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DHA + UMP were: PC 28%, PE 59%, PS 160%, and PI 100% (all p < 0.01 vs. their 

controls). Comparable increases were noted in the pre- and postsynaptic proteins 

examined in the contralateral hippocampus of the same animals. Expression levels 

of PSD-95 [164] and GluR-1 [165, 166] are known to be highly associated with the 

growth of dendritic spines, and also with the intensity of the physiological responses 

of the postsynaptic neurons. Synapsin-1, on the other hand, is expressed in presyn-

aptic terminals, and apparently anchors synaptic vesicles to the actin cytoskeleton for 

exocytosis or synaptogenesis [167, 168]. The increases in PSD-95, synapsin-1, and 

GluR-1 (the metabotropic glutamate receptor subunit) after treatment with DHA 

alone were 42, 37, and 29% (all p ≤ 0.05), while the increases after treatment with 
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Fig. 5. Effects of DHA, alone or 

in combination with a UMP-

supplemented diet, on den-

dritic spine formation in adult 

gerbil hippocampus. Animals 

received UMP (0.5%), DHA (300 

mg/kg) or both daily for 4 

weeks; control gerbils received 

neither. a Apical dendrites of 

CA1 pyramidal neurons. b 

Animals supplemented with 

DHA exhibited a significant 

increase in spine density (by 

19%, *p = 0.004 vs. Control); 

those receiving both DHA and 

UMP exhibited a greater 

increase (by 36%, **p < 0.01 vs. 

Control or by 17%, p = 0.008 

vs. DHA). n = 20–25 neurons 

from 4 animals per group. 

One-way ANOVA followed by 

Tukey’s test. c The effect of 

DHA + UMP on spine density 

was apparent by 1 week after 

the start of the treatment. The 

treated groups received both 

UMP (0.5%) and DHA (300 mg/

kg) daily for 1, 2, 3 or 4 weeks; 

the control groups were given 

only a regular diet. n = 12–20 

neurons from 2 animals per 

group. Two-way ANOVA fol-

lowed by Tukey’s test. *p = 

0.02; **p < 0.01 [data from 15].
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DHA + UMP were by 44, 57, and 37%, respectively (all p < 0.01). Treatment with 

DHA or with DHA + UMP also elevated brain levels of actin, a cytoskeletal protein 

which can directly regulate the morphology of dendritic spines and which is impli-

cated in such manifestations of synaptic plasticity as long-term potentiation (LTP) 

and depression (LTD) [161–163, 166, 169]. Actin levels rose by 60% after DHA, and 

by 88% in animals receiving DHA + UMP.

In contrast, levels of β-tubulin, a cytoskeletal protein that is not specifically local-

ized within synaptic structures, were unaffected by the treatments [15].

Oral supplementation with AA failed to affect dendritic spine density in the CA1 

region of the adult gerbil hippocampus even though, like DHA, AA does affect syn-

aptic plasticity in cultured neurons [170–172]. As described above, AA also failed to 

affect hippocampal levels of phosphatides or of synaptic proteins [15]. 

The mechanisms through which DHA, with or without uridine, increases den-

dritic spine formation may also involve presynaptic processes. Results from various 

model systems indicate that both DHA [9, 173, 174] and uridine [16, 175, 176] can 

promote axonal growth and exocytosis in cultured cells. As mentioned previously, 

DHA can activate the SNARE protein syntaxin-3 [9] while uridine, through UTP, can 

activate P2Y receptors [16], which are expressed in hippocampal neurons [177] and 

are implicated in presynaptic induction of LTP [178]. Formation of dendritic spines 

and synaptogenesis in mammalian brains can be induced or initiated by presynaptic 
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neurons, and this process may involve calcium [161–163, 179]. The increases in spine 

density with DHA and UMP treatment (fig. 5) may thus result from potentiation of 

pre- or postsynaptic mechanisms.

Effects of Uridine on Neurotransmitter Release

Consumption by rats of a diet containing uridine (as UMP) and choline can increase 

dopamine (DA) and ACh levels in, and – as assessed using in vivo microdialysis – 

their release from, corpus striatum neurons. Apparently no data are available on the 

effects on neurotransmitter production or release of giving DHA alone or with the 

other two phosphatide precursors. Dietary supplementation of aged male Fischer 344 

rats with 2.5% UMP for 6 weeks, ad libitum, increased the release of striatal DA that 

was evoked by potassium-induced depolarization from 283 ± 9% in control rats to 

341 ± 21% in those receiving the UMP (p < 0.05) [175]. In general, each animal’s DA 

release correlated with its striatal DA content, measured postmortem. The levels of 

neurofilament-70 and neurofilament-M proteins, two markers of neurite outgrowth, 

were also increased after UMP treatment, to 182 ± 25% of control levels for the neu-

rofilament-70 (p < 0.05) and to 221 ± 34% (p < 0.01) for the neurofilament-M [175].

In a similar microdialysis study, ACh release, basally as well as after administration 

of atropine (a muscarinic antagonist which blocks inhibitory presynaptic cholinergic 

receptors), was found to be enhanced following UMP consumption. Among aged ani-

mals consuming a UMP-containing diet (2.5%, w/w) for 1 or 6 weeks, baseline ACh 

levels in striatal microdialysates rose from 73 to 148 fmol/min after 1 week of treat-

ment (p < 0.05), and to 197 fmol/min after 6 weeks (p < 0.05) [176]. Dietary UMP 

(0.5%, 1 week) also amplified the increase in ACh release caused by giving atropine 

(10 μm, via the artificial CSF); atropine alone increased ACh concentrations from 

81 to 386 fmol/min in control rats and from 127 to 680 fmol/min in those consum-

ing UMP (p < 0.05). Young rats eating the UMP-containing diet exhibited similar 

responses. These data suggest that giving a uridine source may enhance some cho-

linergic functions, perhaps by increasing synaptic membrane or the ACh stored in 

synaptic vesicles.

Additional evidence that treatment with UMP alone or with UMP + DHA can 

affect brain neurotransmission comes from a few behavioral studies [33, 180]. 

Among socially-impoverished rats DHA (300 mg/kg by gavage) or DHA + dietary 

UMP (0.5%) treatment for 4 weeks reversed the deficits in hippocampal-dependent 

learning and memory performance [33] (fig. 7). Similarly, chronic dietary adminis-

tration of UMP (0.1%) alone for 3 months also ameliorated this impairment among 

the impoverished rats [180]. Since in these small studies both UMP alone and UMP 

+ DHA completely restored learning and memory in the socially-impoverished ani-

mals, these data do not allow comparisons to be made on the relative efficacies of the 

two treatments.
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Conclusions

Brain phosphatide synthesis requires three circulating compounds: DHA, uridine, 

and choline. Administration of these compounds orally increases the levels of phos-

phatides in brain cells, and also those of synaptic proteins and the numbers of den-

dritic spines; EPA but not AA reproduces these effects of DHA. This treatment may 

thus enhance neurotransmission.

Administering these phosphatide precursors may be useful in clinical situations in 

which the number of particular brain synapses and/or neurons is inadequate because 

of a disease process (e.g. neurodegenerative disorders like Alzheimer’s or Parkinson’s 

diseases) or a developmental disturbance (e.g. prematurity). In some of these situa-

tions patients already may be treated with supplemental DHA [3, 181]. Available data 

suggest that the beneficial effects of giving this PUFA will be enhanced if patients 

also receive adequate amounts of uridine. (They may also benefit from supplemen-

tal choline, although at least in infants, plasma choline levels are already manifold 

higher than they are in adults [182, 183], and breast milk is particularly rich in choline 

sources [183].) Clinical testing will be needed to determine whether this approach is 

effective.
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Brain development begins shortly after conception. In humans, the brain approaches 

adult mass within the first 2 years of life. Within this time, the foundation for the 

neural circuitry of the brain is established. As the body’s central command center, 

the brain is responsible for orchestrating physiological actions in response to envi-

ronmental stimuli. Normal brain operation is therefore critical for optimizing surviv-

ability in the animal kingdom and socioeconomic potential for humans. Early access 

to an adequate supply of substrates for neural development is a key requirement for 

preventing irreversible cognitive deficits [1–3].

The omega–3 and omega–6 long-chain polyunsaturated fatty acids (LC-PUFAs) 

docosahexaenoic acid (DHA, 22:6n–3) and arachidonic acid (AA, 20:4n–6) are the 

major n–3 and n–6 PUFAs in the membrane structural lipids of the white and gray 

matter of the brain, and retina [4, 5]. In humans, AA is present throughout the gray 

and white matter of the brain at the sn-2 position of phosphatidylinositol and phos-

phatidylethanolamine [6]. DHA is highly enriched in the synaptic regions of gray 

matter [7] at the sn-2 position of phosphatidylethanolamine and phosphatidylserine 

[6]. In nervous tissue, both DHA and AA serve as precursors of signal mediators 

[8, 9]. They are also needed for vesicle fusion [10] and synaptic neurotransmission 

[11]. In addition, DHA affects several aspects of brain development and function. In 

particular, neuron proliferation [12], gene expression [13], size [14, 15], connectiv-

ity [16, 17], synapse turnover [18], neurotransmitter levels [19, 20], and survivability 

[21]. The effects of DHA on neural activities ultimately influence cognition [22] and 

behavior [23, 24].

LC-PUFAs are synthesized from the respective essential fatty acid precursors, 

α-linolenic (ALA) and linoleic acid. In humans, ALA to DHA conversion efficiency 

is estimated to be less than 1% [25]. Therefore, in periods of rapid brain growth [26], 
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adequate dietary LC-PUFA supplementation is needed in order to obtain the mini-

mal levels required to support optimal neurological development [27, 28]. For this 

reason numerous investigators have sought to determine the dietary requirement for 

DHA during infancy and throughout life [27, 29–31]. A number of studies have con-

sidered dietary DHA requirements based upon brain accretion rates of DHA [32], tis-

sue concentration [33], and turnover or metabolism of DHA in the brain [31]. Initial 

estimates by Cunnane et al. [27] indicated that during the first 6 months of life, DHA 

accumulates in the brain at a rate of about 10 mg/day in breast-fed infants. They pro-

posed that in order to support this rate of accretion or accumulation, a minimum 

dietary intake of 20 mg/day of DHA is needed. The accretion rate of dietary DHA in 

the brains of infants was therefore estimated to be about 50% of intake [27]. Based on 

isotope tracer information from neonatal primates, Su et al. [29, 30] reported a much 

lower estimate for the rate of DHA accretion. According to their estimate, only 1.7% 

of dietary DHA is accumulated in the primate brain, whereas only 0.23% of brain 

DHA accretion was attributable to conversion of its precursor, ALA. In another study, 

Rapoport et al. [31, 34] described aspects of human brain metabolism for both DHA 

and AA (20:4n–6). These authors considered rates and mechanisms of incorporation 

of these LC-PUFAs from plasma to replace the amounts lost by turnover. However, 

dietary requirements and accretion rates for specific age groups were not reported.

In the present assessment, we consider the data for DHA accretion, concentra-

tion, and turnover from previously published studies and propose a general model 

for human brain DHA homeostasis. An estimate for the dietary requirement of DHA 

during early childhood (1–2 years of age) is provided.

Methods

DHA Content in the Brain

Based on autopsy information, Martinez [26] reported the amount of DHA (nmol/g) present in the 

brain at different ages (e.g., third trimester to 2.28 years of age, table 1). From the third trimester of 

life to 2.3 years of age there is about a 12-fold increase in brain size [35], and the concentration of 

Table 1. Brain weight and content of DHA by age [data from 26]

Age

years

Days post-

conception

Brain weight

g

Brain concentration

of DHA, nmol/g

Total brain DHA 

(calculated, mg)

–0.028 Beginning of 

 3rd trimester

   99 2,826      92

0 (birth) 104   413 5,292    718

0.44 160.60   756 7,255 1,802

1.15 420 1,100 8,714 3,149

2.28 832 1,180 9,669 3,748
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DHA increases from 2,826 to 9,669 nmol/g [26]. To provide an estimate of the daily accretion of 

DHA between 1 and 2 years of age as described below, we used the information for children 1.15 

and 2.28 years of age as provided by Martinez [26] (fig. 1a).

Total brain DHA for a typical 1-year-old was determined to be 3.15 g by using the molecular 

weight of 329 g/mol for DHA, and a brain weight of 1,100 g (table 1) (8,714 nmol × 329 ng/nmol × 

10–6 = 2.86 mg DHA/g brain tissue; 2.86 mg DHA × 1,100 g brain = 3.2 g DHA). Total brain DHA 

for a 2-year-old was estimated similarly by using a brain weight of 1,180 g to calculate 3.75 g at 2.28 

years of age. The amount of DHA accumulated daily in the brain between 1.15 and 2.28 years is 

1.46 mg/day (3.75–3.15 g = 0.6 g or 600 mg; 832–420 days = 412 days; 600 mg/412 day = 1.46 mg 

DHA/day).

DHA Turnover in the Brain

In addition to the content of DHA in the brain, information about daily turnover is needed to 

assess DHA uptake by the brain. Turnover is defined as the quantity of unesterified DHA lost to 

efflux or catabolism by the brain, and is equivalent to the amount incorporated from circulation for 

adults [31]. Incorporation data from recently reported radioisotope-labeling studies [36] and the 

total content of brain DHA calculated above were used. To measure incorporation, an adult human 

male was administered radiolabeled DHA [36]. An accretion rate of 4.6 mg/day (14 μmol/day) was 

reported [36]. Incorporation at this rate for a 1,500 g brain containing 4,773 mg (9.7 μmol/g) of 
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Fig. 1. DHA accretion (a) and estimated turnover (b) rate by the brain during early development.
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DHA, according to Rapoport’s described method [31] was then used. From this, an estimated turn-

over of 0.1%/day was derived [(14 μmol/1,500 g/day)/9.7 μmol/g] ×100).

Assuming a constant turnover throughout this time period, the estimated rate of DHA turnover 

for a 1- to 2-year-old child with a total amount of 3.75 g of DHA in the brain is 3.75 mg/day (0.001/

day × 3.75 g) (fig. 1b).

Daily Dietary Requirement of DHA during Early Childhood

The dietary requirement of DHA is the sum of two components: daily accretion (1.45 mg/day) and 

turnover, i.e. catabolism (3.75 mg/day). Thus, during the period of about 1–2 years of age, 5.2 mg/

day of DHA (1.45 mg + 3.75 mg/day) is needed by the brain.

Dietary DHA is available to the brain from either circulating preformed DHA or from the 

conversion of ALA to DHA. Following absorption, hepatic metabolism and redistribution 

determine LC-PUFA availability for other tissues via the circulation [37]. In the liver, 50–80% of 

the ALA from the diet undergoes β-oxidation [38]. In contrast, preformed dietary DHA bypasses 

the β-oxidation pathway and is much more bioavailable for accretion by various tissues relative to 

ALA derived DHA [39].

In the USA, the average intake of ALA is ~700 mg/day between 1 and 3 years of age [40]. 

Assuming that only 0.23% [29, 41] (0.0023 × 700 mg/day = 1.6 mg/day) of this amount is available 

for use by the brain, the remaining 3.6 mg/day (5.2–1.6 mg/day) must be provided by preformed 

dietary DHA. Because only 1.7% of dietary preformed DHA reaches the brain [29, 41], 212 mg/day 

(3.6 mg/day/0.017) is necessary to maintain DHA homeostasis in the brain between 1 and 2 years 

of age.

Discussion and Conclusions

Our calculations show that 212 mg/day of DHA is required to support the net require-

ment composed of brain accretion and catabolism components of 5.2 mg/day of DHA 

between 1 and 2 years of age. Notably, the value for brain DHA accretion and turn-

over that this estimate is based on is nearly identical to the estimate of about 5 mg/

day previously reported by Cunnane et al. [27]. During perinatal development, brain 

growth is rapid and DHA plays an important role in cognitive function and visual 

acuity [42]. Additional amounts of DHA may be needed to prevent potential losses 

due to disease, infection, surgery, undernutrition or other conditions that adversely 

affect metabolism [27, 34].

A recommended dietary intake has not been established for DHA. Instead, rec-

ommendations at present have been based on adequate intake values established 

for ALA, the precursor of DHA. The Institute of Medicine (IOM) recommends that 

dietary intake of the omega–3 LC-PUFAs DHA and/or eicosapentaenoic acid make 

up 10% of the adequate intake of ALA [43]. Accordingly, the current IOM recom-

mendation for DHA for the 1- to 3-year-old child is only 70 mg/day. Notably, the 

fact that eicosapentaenoic acid does not accumulate in the brain of humans [26] and 

primates [30, 44] is not mentioned in the IOM report [43]. Recommendations by an 

expert panel indicated that an intake level of 0.35% DHA, or about 80–200 mg/day, 

was adequate between birth and 6 months of age [45]. The World Health Organization 
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recommends 20 mg/kg/day of DHA for term infants based on neurological benefits 

[46]. In terms of dietary intake, this amounts to 172–248 mg/day for infants between 

the 5th and 95th percentile of body weight at 1 year of age, a level that is in agreement 

with the daily recommendation provided here.

Presently, the amounts of DHA added to commercially available infant formulas 

are based upon median LC-PUFA concentrations in Western human milk [47]. As a 

result, dietary concentrations of DHA in infant formulas range from 0.15 to 0.32%, 

or 8.1–17 mg DHA/100 kcal. Throughout the world, DHA intake by nursing infants 

varies widely because of differences in maternal dietary habits and access to DHA-

enriched foods [47]. The mean DHA content of human milk in Japan is close to 1% 

compared to only 0.06% availability for nursing infants in Pakistan [48]. From this it 

is clear that nutrient availability in breast milk depends largely upon environmental 

resources. Based upon the rate of DHA accretion by the brain during the early phases 

of development [26] a dietary DHA requirement near 1% has been estimated by this 

assessment.

Other sources of LC-PUFAs for infant brain development include tissue stores and 

synthesis. Careful estimates indicate that in term infants peripheral body compart-

ments are used as reserves to support brain substrate requirements when the avail-

ability of preformed DHA is inadequate [27]. Indeed, a recent study of deuterated 

EFA metabolism showed evidence of DHA efflux from certain tissue reserves and 

concomitant maintenance by the brain, retina, and other high priority systems [49]. 

Human infants are capable of synthesizing DHA from ALA [50]. Recent studies indi-

cate that neonatal DHA synthesis levels of ~12 mg/kg/day are reduced to about 2 mg/

kg/day as toddler age nears [51]. However, the preponderance of evidence supports 

a wide gap between DHA accrual by the brain due primarily to endogenous synthe-

sis, versus preformed dietary sources [52–55]. Ultimately, the combination of limited 

synthesis and storage capacities by peripheral tissues necessitates preformed DHA 

in the diet in order to maintain circulating levels [28, 56]. In the USA, the transition 

from breast milk to complementary foods typically occurs between 4 and 6 months 

of age. Infants are typically weaned long before the brain growth spurt has been com-

pleted. DHA intake by children between 7 months and 3 years old is about 30 mg/day 

[57]. This amount is less than one-third of the dietary intake level from human milk, 

at 6 months of age.

In order to provide adequate DHA for the growing infant brain, requirements 

based upon brain metabolism and function are needed. Evidence of this has recently 

been demonstrated in non-human primates by a nearly 3-fold higher dietary DHA 

requirement to saturate DHA levels in the cerebral cortex, relative to mother-reared 

controls (63 vs. 21.3 mg DHA/100 kcal) [24]. However, the potential health benefits 

gained from nutritional DHA seems to persist well beyond early infancy [25–29]. In 

fact, a recently reported clinical study, preterm infants supplemented with 1% DHA 

showed improved neurodevelopment after 18 months relative to those supplied with 

0.2–0.3% [58].
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To better define dietary DHA requirements for optimal brain and neurophysio-

logical health, more information about DHA concentration in the brain and overall 

metabolism during growth and development is necessary. Additional autopsy analy-

ses of tissue DHA, and brain DHA uptake and turnover studies using radiotracers 

and other techniques are needed for accurately estimating dietary requirements for 

humans.

In this assessment, data for brain metabolism of DHA was derived from human 

and animal models. This was obviously due to technical limitations related to charac-

terizing LC-PUFA metabolism and distribution in different tissues in humans. Other 

considerations include the use of data from adults for estimating DHA turnover. 

Reports of the DHA content in the adult brain indicate values of 4.6–5.3 g [31, 34, 

59]. There are many possible reasons to explain this variation of DHA content. Since 

ideal DHA accumulation levels in the adult human brain have not been identified, the 

significance of these amounts is unknown. Moreover, studies of DHA metabolism by 

the human brain should be accompanied by information about biomarkers of DHA 

status. Such information is indeed relevant due to potential influences on the rate of 

DHA, and possibly total 22-carbon LC-PUFA, turnover [60]. A clearer understanding 

of each of these factors is important to facilitate determination of metabolic require-

ments for DHA by humans.

The model presented here for the dietary requirement of DHA during 1–2 years 

of age is based on the physiological demands of the brain rather than on an estimate 

derived from the caloric contribution of ALA or LC-PUFA status. The limited conver-

sion of ALA to DHA necessitates the use of pre-formed dietary DHA. A recommen-

dation for DHA intended for normal brain development should reflect physiological 

requirements throughout life. According to our estimates, 212 mg/day of dietary pre-

formed DHA are required to support DHA accretion and turnover in the brain dur-

ing (between 1 and 2 years of age) early childhood. More work is needed in this area, 

in order to better understand the nutritional LC-PUFA needs of the growing brain.
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Conceptual Basis of Inquiry: Points at Which Gene Variants May Impact Lipid 

Age-Related Macular Degeneration Relationships

Age-related macular degeneration (AMD) is a major cause of visual impairment and 

blindness in people of Western European ancestry [1]. Approximately 3.4 million, 

1.8 million, and 130 thousand people are now living with sight-threatening AMD in 

Europe, the USA, and Australia, respectively; this number is expected to increase by 

50% by 2020 if preventive interventions are not developed [2]. AMD manifests tissue 

and cellular dysfunction in the forms of abnormal angiogenesis and proliferative neo-

vascularization [3], excessive vascular permeability [4], immunoregulatory dysfunc-

tion [5], alterations in physiologic reduction-oxidation balance [6], and neuronal/

retinal pigment epithelium (RPE) cell degeneration [4]. Lipid-based compounds, 

their precursors, cleavage and biosynthetic enzymes, and metabolites have the capac-

ity to modulate processes and systems implicated in AMD pathogenesis [7–14]. A 

number of bioinformatic and analytic methods exist to guide investigations on joint 

actions of genes encoding elements of biologic pathways. These have been adapted to 

analysis of data from genome-wide association studies [15].

An emerging evidence base indicates a lower likelihood of advanced AMD among 

people reporting the highest levels of eicosapentaenoic acid (EPA, 20:5ω–3,), and 

docosahexaenoic acid (DHA, 22:6ω–3), EPA + DHA, or fish intake [12, 16–26]. DHA, 

a major dietary omega–3 (ω–3) long-chain polyunsaturated fatty acid (LCPUFA), 

is also a major structural lipid in sensory [27] and vascular [28, 29] retina. EPA is 

a major dietary ω–3 LCPUFA, the precursor to both DHA and a family of potent 
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paracrine and autocine effectors with vaso- and immunoregulatory actions [30, 31]. 

While EPA is not detected in appreciable quantities within retinal phospholipids, it 

circulates in vascular tissue and is rapidly used for eicosanoid biosynthesis in various 

cellular and tissue compartments. The most efficient way to alter retinal DHA con-

centrations is through consumption of dietary DHA. Fish are the main dietary source 

of EPA and DHA [32–34]. Pioneering mechanistic studies informing inference on 

ω–3 LCPUFA-AMD relationships have been conducted over the past decade [7, 8, 10, 

11, 14, 35–44], and breadth of findings from applied clinical research designs is now 

expanding.

Our central premise that dietary and retinal fatty acids and their metabolites affect 

and are affected by metabolic and environmental factors and processes implicated in 

pathogenesis of neural and vascular retina was developed from a number of extant 

reports and texts [13, 27, 45]. Elements of our conceptual framework exist in table 

1. ω–3 LCPUFAs and their metabolites exhibit cytoprotective and reparative actions 

contributing to a number of anti-angiogenic [11] and neuroprotective [9, 46] mech-

anisms within the retina. AMD pathogenesis is associated with ischemia, chronic 

light exposure, oxidative stress, inflammation, cellular signaling mechanisms, and 

aging [3, 6]. ω–3 LCPUFAs operate within complex systems to impact production 

and activity of vaso- and immonoregulatory compounds classified as eicosanoids, 

angiogenic factors, matrix metalloproteinases, reactive oxygen species (ROS), cyclic 

nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immu-

noregulatory cytokines, and inflammatory phospholipids involved in these processes 

[reviewed in 13, 47]. Effects and actions of metabolic and environmental bioactiva-

tors and bioactive molecules include, but are not limited to, activation of phospho-

lipase A2 (PLA2), cyclooxygenase (COX), and lipoxygenase (LOX), and fatty acid 

anhydrase. Balance and concentration of dietary ω–3 and ω–6 LCPUFA intake and 

tissue status impacts this enzyme system [34] to yield a pool of LCPUFAs and potent 

autocoids [8].

The sections that follow contain information on observed and putative relation-

ships of ω–3 LCPUFAs with metabolic- and environment-based activators and bio-

active compounds in the context of AMD pathogenesis models. We first present the 

body of evidence implicating LCPUFAs as key modulators of processes influenc-

ing AMD pathogenesis. We then apply empirical and inference-based methods for 

examining the relationship of genetic variation in LCPUFA -associated molecules 

with sight-threatening AMD. Our general conclusions are that: (1) there is consis-

tent evidence to suggest that ω–3 LCPUFAs may act in protective roles for AMD; 

(2) whole-genome scanning technology may be applied to efficiently elucidate novel 

pathway and gene set-based associations with complex diseases like AMD, and (3) 

a knowledge-based approach to exposure ascertainment (in this case, identification 

and annotation of lipid-associated genes) is valuable in planning, implementation, 

analytic inference efforts to elucidate novel associations in complex systems.
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Table 1. Central elements of our conceptual framework

Description and physiologic significance of LCPUFAs [reviewed in 45, 48–50]

• EPA has 20 carbons and 5 methylene-interrupted double bonds

• DHA has 22 carbons and 6 methylene-interrupted double bonds

•  DHA, EPA are ω–3 LCPUFAs of physiologic significance; they act as constituents of lipid-protein 

complexes, substrates for bioactive autocoids and natural ligands to nuclear transcription factors

LCPUFA metabolism, intake, transport, and accretion [reviewed in 27, 45, 51]

• LCPUFAs may be of dietary or cellular origin

• Humans may not have capacity to meet retinal tissue needs for LCPUFA through biosynthesis

• Retinal LCPUFA tissue status is modifiable by and dependent on dietary intake

• The hepatocyte is the major site of LCPUFA biosynthesis

•  LCPUFAs are esterified as components of triglycerides and phospholipids, integrated with chylomicrons 

or very low density lipoproteins before transport to the choriocapillaris

•  LCPUFA-rich phospholipids are hydrolyzed and bind to a high affinity, receptor at the choroid-RPE 

interface. They are transported through the interphotoreceptor matrix to the photoreceptor inner 

segment. Esterified DHA-phospholipid compounds are then hydrolyzed, actively transferred to the inner 

segment cytosol and re-esterified into phospholipids, incorporated into photoreceptor disc membranes 

and transported to the outer segment. Discs migrate to the apical tip of the photoreceptor and are then 

shed and phagocytized by RPE cells. DHA is then stored within oil droplets in the RPE. DHA is efficiently 

recycled to the inner segment via a receptor-mediated process

• LCPUFAs may be biosynthesized on neural and vascular retinal endoplasmic reticulum and peroxisomes

• ω–3 LCPUFA-rich foods are based mainly in marine and lacrustine products [32, 33]

• DHA is accreted selectively and retained efficiently in photoreceptors [52]

LCPUFAs in retinal structure and function

• DHA is a major structural component of retinal membranes [27]

• DHA tissue status insufficiency is associated with altered visual processing capacity [53]

• DHA affects retinal cell signaling mechanisms in phototransduction [54–56]

• LCPUFAs influence gene expression [50, 57–59] and retinal cell differentiation, and survival [37–44, 60]

Impact of metabolic and environmental factors on LCPUFAs and implications for AMD pathogenesis [reviewed in 

12, 13]

•  PLA2 cleaves LCPUFAs from their esterified form within membranes and lipoproteins to a free form 

capable of acting as a substrate for synthesis of potent autocrine and paracrine lipid mediators [7, 9–11, 

14, 31, 46, 61]. PLA2 is activated by light exposure, ischemia, oxidative stress, apoptosis, inflammation, 

cell-signaling molecules, and aging. Retinal diseases are associated with PLA2 activity and with these 

metabolic and environmental factors

•  COX and LOX catalyze conversion of LCPUFAs to eicosanoids. COX and LOX are activated by ischemia, 

oxidative stress, light exposure, apoptosis, inflammation, cell-signaling molecules, and aging. Retinal 

diseases of public health significance are associated both with COX/LOX activity and with these 

metabolic and environmental factors

•  LCPUFAs demonstrate anti-angiogenic, anti-vasoproliferative, and neuroprotective actions on factors 

and processes implicated in the pathogenesis of vasoproliferative and neurodegenerative retinal 

diseases

•  These actions affect eicosanoids, angiogenic factors, reactive oxygen species, matrix metalloproteinases, 

cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immunoregulatory 

cytokines, and inflammatory phospholipids

LCPUFAs and retinal diseases of public health significance [reviewed in 12, 13]

• LCPUFAs have the capacity to affect pathogenic processes implicated in retinal neovascularization

• LCPUFAs have the capacity to affect pathogenic processes implicated in retinal neural degeneration



108 SanGiovanni · Mehta  · Mehta 

The Nature of Essential Fatty Acids, LCPUFAs, and Their Distribution in Retina

Fatty acids are synthesized via condensation of malonyl coenzyme A (CoA) units by a 

fatty acid synthase complex. Two families of essential fatty acids (EFAs) exist, i.e. ω–3 

and ω–6. Humans do not have capacity for de novo biosynthesis of EFAs (α-linolenic 

acid (ALA, 18:3ω–3) and linoleic acid (LA, 18:2ω–6), because of a natural absence of 

Δ15- and Δ12-desaturase enzymes. LCPUFAs may be obtained directly through the 

diet or formed from ALA (ω–3 LCPUFAs) or LA (ω–6 LCPUFAs).

ω–3 and ω–6 LCPUFAs contain a carboxyl head group and a carbon chain (≥18 

carbons) with two or more methylene-interrupted double (unsaturated) bonds. EFAs 

and LCPUFAs are structurally classified by the number of carbons, double bonds, and 

proximity of the first double bond to the methyl (ω) terminal of the fatty acid acyl 

chain. Fatty acids of the ω–3 family contain a double bond at the third carbon and 

those of the ω–6 family contain a double bond at the sixth carbon. EPA contains 20 

carbons, 5 double bonds, and has a molecular weight of 302.451. DHA has a carbon 

chain length of 22, 6 double bonds, and a molecular weight of 328.488. Arachidonic 

acid (ΑΑ, 20:4-ω6) is a major dietary ω–6 LCPUFA with 20 carbons, 4 double bonds, 

and a molecular weight of 304.467.

In humans, LCPUFA stores exist mainly as esterified complexes in the sn-2 posi-

tion of glycerophosphates (also known as glycerophospholipids or phospholipids) or 

trihydric glycerols (also known as triacylglycerols or triglycerides). Within the neural 

retina, phospholipids are the predominant LCPUFA-rich lipid class; these compounds 

act mainly as structural elements of membranes. Phosphatidylcholine (PC) represents 

40–50% of retinal phospholipids and is localized mainly to the outer membrane leaf-

let. Phosphatidylethanolamine (PEA) and phosphatidylserine (PS) represent 30–35 

and 5–10% of retinal phospholipids, respectively; both species tend to orient within 

the cytoplasmic leaflet. PEA and PS respectively represent 30–35 and 5–10% of retinal 

phospholipids; both tend to orient within the cytoplasmic leaflet. Phosphatidylinositol 

(PI) represents 3–6% of retinal phospholipid membrane domains [47].

Highest body concentrations of DHA per unit weight exist in phospholipids of 

retinal photoreceptor outer segments and the overall percent of DHA (30% of all reti-

nal fatty acids) is 50 mol% greater than in the next most concentrated tissue [52]; 

DHA is also found in substantial amounts within retinal vascular tissue and glia. PEA 

and PS are the dominant retinal DHA-containing phospholipid species. AA is a major 

fatty acid of vascular and neural retinal tissue. The highest concentrations of AA are 

found in PC and PEA. EPA exists in vascular tissue and blood components, but does 

not accrue appreciable quantities to retinal tissue – it is quickly used in DHA or eico-

sanoid biosynthesis (reviewed in Nelson [62]).

The lipid composition of retinal photoreceptor outer segments is unique: 80–90% 

of structural lipids are phospholipids and 8–10% are neutral lipids [27, 63]. Neutral 

lipid species are mainly cholesterol, although free fatty acids can be detected as well. 

Retinal phospholipids are also unique because of their polyenoic nature. Polyenoic 

phospholipids contain PUFAs in the sn-1 or sn-2 positions of the molecule’s glycerol 
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backbone. Phospholipids in the outer segments are predominantly dipolyenoic [64–

66]. Dipolyenoic species are known to increase rate of rhodopsin activation (metar-

hodopsin II formation) in model membrane systems [67]; this process is essential in 

phototransduction.

Fliesler and Anderson [27] provide a detailed review on chemistry and metabo-

lism of lipids in the vertebrate retina. Vertebrate retinal phospholipid species include: 

(1) PEA as ~40% of outer segment lipids; (2) PS as ~12%, and (3) PC as ~10% of total 

outer segment lipids. PC, PE, PS, and PI respectively represent ~48, 32, 9, and 4% of 

retinal phospholipids. DHA exists as approximately 20% of the fatty acids for outer 

segment PC, and ~30% for each of PE and PS [27, 68]. Half of all PC fatty acids are 

saturated (~30% palmitic acid and ~20% stearic acid); in PE these values are ~10 and 

36%, respectively. 30% of PS fatty acids are saturated, with the greatest proportion 

being stearic acid (~28%).

EPA, DHA, and AA are fatty acids of physiologic significance; they act as:

• Key structural constituents of phospholipid membranes. DHA and AA are major 

fatty acids of neural and vascular retinal tissue.

• Ligands to transcription factors for genes influencing: (a) cellular differentiation 

and growth; (b) lipid, protein, and carbohydrate metabolism. DHA and EPA affect 

gene expression through regulation of transcription factor activity and concentra-

tion within the nucleus. Transcription factors containing a LCPUFA-binding 

domain include peroxisome proliferator-activated receptors (PPARs), the retinoid 

X receptor (RXR), nuclear factor-κB (NF-κB), and sterol regulatory element-bind-

ing proteins (SREBPs). In some cases, metabolites of the EPA and DHA also act 

directly as ligands.

• Effectors of signal transduction pathways regulating gene transcription. These path-

ways include enzyme-based LOX, COX, protein kinase C (PKC), and sphingomy-

elinase. LCPUFAs may also regulate pathways affecting serine-threonine and 

tyrosine kinase-linked- and G-protein receptors.

• Substrates for eicosanoid or endocannabinoids of in inter- and intracellular signal-

ing cascades influencing vascular, neural, and immune function.

EFA and LCPUFA Metabolism, Transport, and Accretion to the Retina

A detailed discussion of LCPUFA metabolism, transport, and accretion appears in 

Chow [45]. LCPUFAs are obtained through diet or derived from EFAs. EFAs may be 

desaturated (by insertion of double bonds) and elongated (by addition of 2-carbon 

units) to LCPUFAs on the hepatic or retinal endoplasmic reticulum (ER). ALA is the 

dietary precursor to EPA and DHA. LA is the dietary precursor to AA. Conversion 

from 24- to 22-carbon LCPUFAs requires β-oxidation in the peroxisome. Because 

ω–3 and ω–6 EFA families compete for the same desaturases and elongases, dietary 

lipid balance and composition will affect production and tissue accretion of these 

nutrients [33, 69, 70]. Although biosynthesis of LCPUFAs from EFAs is possible, the 
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efficiency of tissue accretion is highest when they are ingested in the preformed state 

[71]. Photoreceptors are constrained in their capacity to synthesize DHA [72, 73]. 

RPE [73], retinal endothelium [74], and brain astrocytes [75] are able to synthesize 

DHA.

Gordon and Bazan [47] and Rodriguez deTurco et al. [76] present pathways 

through which LCPUFAs enter the retina. Within foods, EFAs and LCPUFAs exist 

mainly in esterified forms as triacylglycerols (TGs). During early phases of absorp-

tion, free fatty acids are hydrolyzed within the intestine from the sn-1 and sn-3 posi-

tions of TGs by pancreatic lipase. DHA is most likely to occupy the sn-2 position of 

the resulting 2-monoglyceride. EPA exists mainly at the sn-3, and to a lesser extent, 

the sn-1 position [32]. Free LCPUFAs and LCPUFA-monoacylglycerol complexes 

are subsequently re-esterified to phospholipids and TGs within enterocytes of the 

intestinal epithelium. TGs and phospholipids are next integrated to chylomicrons 

and very low density lipoproteins (VLDL), secreted into the lymphatic system, and 

circulated to the liver from the thoracic duct via blood. The bulk of DHA biosyn-

thesis from ALA occurs in liver [77]. ALA enters the hepatocyte through a recep-

tor-mediated process and is activated by CoA. The fatty acid complex subsequently 

enters the smooth ER where it is elongated and desaturated to DHA-CoA. DHA-

CoA enters the rough ER and is esterified to phospholipids and then complexes with 

apoproteins. The complex arrives to the Golgi bodies in vesicular form where they 

are assembled into lipoproteins and secreted [78]. DHA of cellular and dietary ori-

gin is transported via VLDL lipoproteins to the choriocapillaris. Lipoprotein lipase 

hydrolyzes chylomicrons remnants and VLDL within the choriocapillaris. The great 

majority of lymph-borne esterified LCPUFAs are transported in TGs of the chylomi-

cron and VLDL fractions; they exist to a lesser extent as free fatty acids and within 

PC, cholesterol ester, monoglyceride, and diglyceride pools. DHA is accreted mainly 

to phospholipids species composing membranes (PEA, PC, PS) in the retina. Within 

the circulation, LCPUFAs on chylomicron-bound TGs are hydrolyzed to their free 

forms by capillary-endothelial-cell-derived lipoprotein lipase. These free fatty acids 

may subsequently form non-covalent bonds with albumin in blood plasma for deliv-

ery to tissues.

Retinal biosynthesis of DHA is slow and may be insufficient to sustain the needs of 

photoreceptors [72, 73]. In addition to photoreceptors, cellular sources of DHA exist 

in RPE [73], retinal endothelium [74], and brain astrocytes [75]. Scott and Bazan [77] 

and Li et al. [79] present evidence that the liver is a key site for LCPUFA biosynthesis. 

Hepatic biosynthesis determines availability and distribution of LCPUFAs in plasma 

lipids and lipoproteins, lipoprotein assembly, and tissue uptake [47].

DHA transport via the choriocapillaris to the RPE and inner segments is likely to 

be mediated by a high affinity receptor-mediated uptake. Hepatectomized rats exhibit 

rapid accretion of LCPUFAs in neural tissue [80], suggesting that transport systems 

and specific binding proteins for these compounds operate effectively within the 

mammalian nervous system. DHA travels from the choriocapillaris via the RPE cells 
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and interphotoreceptor matrix (an extracellular region between the RPE and outer 

limiting membrane). The hydrophobic nature of fatty acids requires specific cytoplas-

mic transport mechanisms, binding proteins, and receptors to transport LCPUFAs to 

the photoreceptors. As there is no direct contact between choroidal circulation and 

photoreceptors, adjacent cell types including RPE cells, astrocytes, and Müller cells 

must aid in the process.

LCPUFA Delivery to Subcellular Membrane Systems in the Photoreceptor. LCPUFA-

containing phospholipids enter the RPE and photoreceptor inner segment via a recep-

tor-mediated transport process involving a high affinity fatty acid-binding protein with 

a lipoprotein lipase [47]. LCPUFAs enter the photoreceptor inner segment in a smooth 

ER-dense area adjacent to the base of the outer segment. After enzymatic degrada-

tion of the DHA-containing triglyceride in the inner segment, activation of fatty acid 

co-enzyme A initiates esterification of DHA to phosphatidic acid. De novo phospho-

lipid, di- and triglyceride biosynthesis occurs following this process. DHA-containing 

phospholipids are subsequently integrated as structural constituents of photorecep-

tor disc membranes and are retained in proximity to rhodopsin molecules across the 

lifespan of the photoreceptor disc. Efficient mechanisms of repair for oxidized DHA 

exist and this condition allows the molecule to remain intact within photoreceptor 

discs. Properties of DHA retention and repair are unique among photoreceptor lipids. 

As discs migrate to the outer segment-RPE interface, are shed, and phagocytized the 

photoreceptor, the DHA content is not altered appreciably. Phagosomes are degraded 

in the RPE to form oil droplets containing DHA-rich triglycerides. These triglycerides 

are then transported back to the myoid of the inner segment for re-uptake. RPE cyto-

sol remains virtually free of DHA-containing lipid and lipoprotein species and this 

condition may have important consequences for AMD prevention.

LCPUFAs in the Vascular Retina. Lecompte et al. [29] reported on fatty acid 

composition of isolated bovine retinal microvessels. DHA and AA each represent 

approximately 10% of total fatty acids in purified intact vessels. In primary cultures 

(confluent endothelial cell/pericyte monolayers) the value for DHA was reduced to 

approximately 2%; the value for AA did not change. DHA levels were restored in the 

cell culture with 10 μm supplementation of unesterified DHA. In endothelial cells, 

AA concentration was unchanged; in the case of pericytes, AA concentration was 

reduced. Levels of EPA in both systems were more than 10 times less than those of 

DHA and AA. While substantial variation existed across model systems, the mol% of 

EPA in retinal microvessels was 5-fold higher than that in non-vascular retina (0.5 vs. 

0.1%). This is an important issue, as retroconversion of DHA to EPA is estimated at 

9–11% [81, 82] in human serum [81, 82]. Also, endothelial cultures from bovine mac-

rovascular networks (aorta) exhibit considerable retroconversion. In the Lecompte et 

al. [29] report, retroconversion was negligible, demonstrating specificity of fatty acid 

metabolism that is based on the origin of vascular tissue.

Delton-Vandenbroucke et al. [74] reported that cultured bovine retinal endothe-

lial cells are capable of biosythesizing DHA via desaturation of docosapentaenoic 
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acid (DPA, 22:5) of the ω–3 family. Although EPA was the major metabolite of DPA 

ω–3 desaturation, DPA has been shown to represent 2 mol% of isolated and purified 

bovine microvessels [29].

EFA and LCPUFA Intake and Supplementation

Hibbeln et al. [33] provide estimates of ω–3 and ω–6 fatty acid intake across more 

than 30 countries. US residents typically consume approximately 1.6 g/day (approxi-

mately 0.7% of total energy intake) of ω–3 fatty acids [83]. The bulk of this is ALA. 

EPA and DHA usually represent 6–12% of total ω–3 intake (0.1–0.2 g/day). The main 

sources of ALA are vegetable oils. Linseed, canola, and soybean oils contain the high-

est levels. EPA and DHA are concentrated in fatty fish and this is the main source in 

the Western diet. Roughly 10% of DHA is typically derived from eggs. Products forti-

fied with DHA and EPA are now entering the US consumer market. These products 

usually contain <75 mg/serving. ω–3 LCPUFAs are available as dietary supplements. 

Capsules typically contain 120 mg DHA and 180 mg EPA [84]. In these products EPA 

is usually provided from fish oil. DHA may be derived from single-celled organisms 

or fish oil. A list of commercially available supplements containing DHA and/or EPA, 

the nutrient composition of these supplements, and the supplement manufacturers 

exists at The Natural Medicines Comprehensive Database (http://www.naturaldata-

base.com). Data from the 2003–2004 National Health and Nutrition Survey indicate 

that approximately 1 in 20 US residents aged ≥20 years is now taking a supplement 

containing ω–3 LCPUFAs.

The American Heart Association statement on ω–3 fatty acids and cardiovascular 

disease reviews safety of ω–3 fatty acids and fish [84] and cites dietary intake recom-

mendations of 0.3–0.5 g/day of EPA + DHA from the World Health Organization, 

North Atlantic Treaty Organization, and National Health Ministries of Australia, 

Canada, Japan, Sweden, and the United Kingdom. Gebauer et al. [85] provide a history 

of recommendations. The US Food and Drug Administration (FDA) [86] stated that 

consumption of up to 3 g/day of marine-based ω–3 fatty acids is generally regarded 

as safe (GRAS). The FDA [87] has also approved a health claim for DHA and EPA in 

supplement form. Governmental regulatory bodies have issued statements concern-

ing the potential for hemorrhagic risk with intake of ω–3 LCPUFAs >3 g/day [87; 

discussed in 84]. The antithrombotic and antihemostatic effects of ω–3 LCPUFAs 

operate within physiologic limits at intakes between 1.0 and 3.0 g/day [88–92]; at 

these levels, hemorrhagic risk is not considered a major issue, and most studies using 

higher amounts, up to 6 g/day, have not reported any adverse effects.

DHA Is an Essential Structural Component of Retinal Membranes

Biophysical and biochemical properties of DHA affect membrane function by altering 

permeability, fluidity, thickness, lipid phase properties, and the activation of mem-

brane-bound proteins [93, 94]. DHA-rich membranes impart properties to outer seg-

ments that impact the dynamic of cellular communication processes [67, 95–99]. The 
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stereochemical structure of DHA allows efficient conformational change of the trans-

membrane protein rhodopsin, in response to the capture of light that initiates visual 

sensation. LCPUFA-rich membranes exhibit less rigid global properties than those 

concentrated in cholesterol or saturated fatty acids, since multiple unsaturated bonds 

and long carbon chains in LCPUFAs do not permit dense packing of the hydropho-

bic fatty acid components. A more fluid membrane enables faster response to light 

stimulation. For DHA, the position of the first unsaturated bond at the ω–3 (between 

Δ20 and Δ19) carbon yields gains in efficiency for membrane dynamics over those 

observed in an otherwise structurally identical fatty acid with the first double bond at 

the ω–6 carbon [100].

Biochemical characteristics of DHA provide biologic credibility of its concentra-

tion in the metabolically active retinal outer segment. The highly unsaturated nature 

of DHA makes it highly susceptible to oxidation in the metabolically active photo-

receptor. The evolutionary significance of concentrating DHA in the photoreceptor 

may be that membrane-bound DHA is a primary source of lipid-derived signaling 

molecules that modulate intercellular communication and autocrine signaling from 

the plasma membrane. These processes have the capacity to influence the nuclear 

control of gene expression [101–105]. While esterified AA is more efficiently released 

from membrane stores than DHA [54], retinal astrocytes can provide a readily mobi-

lized source of DHA for such purposes [106].

DHA Tissue Status Is Associated with Alterations in Retinal and Visual Function

Litman et al. [67, 96, 98] investigated mechanisms by which membrane fatty acid 

composition may affect phototransduction. Phototransduction is the process through 

which the retina processes light energy and converts it to a cellular signal. In a dark-

adapted state, retinal photoreceptors maintain a depolarizing ‘dark current’ that is 

mediated by the effect of high cytosolic concentrations of 3′,5′-cyclic guanosine 

monophosphate (cGMP) that open Na+/Ca2+ channels. Phototransduction starts 

with the capture of a photon by rhodopsin. Rhodopsin is subsequently transformed 

to metarhodopsin II (M(II)). M(II) binds to and activates the α-subunit of the tri-

meric G-protein transducin. The M(II)-transducin complex binds to and activates 

tetrameric cGMP phosphodiesterase (PDE) through extraction of one of inhibitory 

γ-subunit. Activated PDE hydrolyzes cGMP to GMP, which produces a hyperpolar-

ized membrane due to dissociation of cGMP from Na+/Ca2+ ion channels. The hyper-

polarized state of the photoreceptor yields a graded decrease of glutamate release on 

horizontal and bipolar cells. Bipolar cells form synapses with retinal ganglion cells; 

axons of the retinal ganglion cells form the optic nerve that connects to brain centers 

that work in visual sensation and perception. The process is stopped when rhodopsin 

is phosphorylated by rhodopsin kinase and then bound with visual arrestin; this pro-

cess inhibits formation of the M(II)-transducin complex.

Litman and Mitchell [67] demonstrated that M(II) formation to an activated 

membrane-bound receptor state was higher in DHA-containing model membrane 
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systems than in those containing AA and cholesterol. DHA enhances production of 

M(II) and activation of the M(II)-transducin complex is more than 2-fold greater in 

DHA-containing systems than it is in those concentrated with saturated and mono-

unsaturated fatty acid species [54]. These findings support the concept that interac-

tion in M(II)-transducin coupling is enhanced (essentially rendered more efficient) 

in DHA-rich membranes. Similar relationships were observed for PDE activity [96].

Actions and Associations of ω–3 LCPUFAs on Processes Implicated in AMD 

Pathogenesis

A number of metabolic and environmental factors and processes activate molecules 

associated with abnormal angiogenesis, proliferative neovascularization, excessive 

vascular endothelial permeability, immunoregulatory dysfunction, alterations in 

physiologic redox balance, and neuronal/RPE cell degeneration observed in AMD. 

As mentioned above, key factors and processes associated with AMD pathogeneis 

include ischemia, light exposure, oxidative stress, apoptosis, inflammation, neuroac-

tive cell signaling molecules, and age-related developmental processes. These factors 

and processes operate in a complex system, share common modulators, and yield 

common outcomes. It is essential to note that in addition to affecting molecules asso-

ciated with the pathogenesis of retinal disease, AMD-associated factors and processes 

are capable of activating: (1) PLA2, leading to release of unesterified LCPUFAs from 

phospholipid membranes, and (2) COXs and LOXs that drive eicosanoid synthe-

sis. As the concentration and composition of ω–3 LCPUFAs stored in phospholipid 

membranes is modifiable by and dependent upon dietary intake, the balance of free 

LCPUFAs and their metabolites is thus affected after activation of PLA2, COX, and 

LOX. It is also essential to consider the role of factors capable of altering the con-

centrations of free LCPUFAs and the activity of key fatty acid cleavage and biosyn-

thetic enzymes when investigating potential actions of ω–3 LCPUFAs in the retina. 

As such, we first review basic concepts related to PLA2, COX, and LOX in the context 

of AMD-associated metabolic and environmental exposures. Table 2 contains refer-

ences to the evidence base on the relationship of these AMD-associated factors and 

PLA2, COX, and LOX.

PLA2 in LCPUFA Hydrolysis. PLA2s catalyze hydrolysis of fatty acids from the ester 

bond at the sn-2 position of phospholipids. Hydrolysis yields free LCPUFAs and lyso-

phospholipids. Approximately 20 groups of PLA2s have been identified; PLA2s are 

generally classified into cytosolic (cPLA2), secretory (sPLA2), and calcium-indepen-

dent (iPLA2) isoforms [111]. cPLA2s are high molecular weight and cleave AA prefer-

entially; Ca2+-dependent and -independent forms exist. Intracellular sPLA2s are low 

molecular weight; these enzymes do not show specificity for particular fatty acids. 

cPLA2α has an N-terminal calcium-dependent phospholipid domain that may per-

mit post-translational regulation by Ca2+ or phosphorylation via mitogen-activated 

protein kinase (MAPK) and PKC [129–133]. Extracellular signal-regulated kinases 

(ERKs) act in communication between cPLA2α and sPLA2s [134, 135]. DHA has been 
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shown to decrease PLA2 activity in nerve growth cones of nerve growth factor-dif-

ferentiated PC12 cells, with a predominant effect on sPLA2 in calcium-independent 

pathways [136].

COX in Eicosanoid Biosynthesis. COX (prostaglandin endoperoxide synthase) is 

a protein complex that converts 20-carbon LCPUFA substrates from ω–6 (AA) and 

ω–3 (EPA) families to G-prostaglandin endoperoxides. Figure 1 presents a basic 

structure of eicosanoid metabolism. This process involves hydrogen subtraction (at 

carbon 11) and subsequent addition of 2 molecules of oxygen. A hydroperoxidase 

subsequently uses glutathione to convert the G-prostaglandins to H-prostaglandins. 

FitzGerald [137] reviews basic aspects of COX production, structure, and actions of 

COX metabolites. The constitutive form of COX (COX-1) exists mainly in the gastric 

mucosa, kidney and platelets, and operates primarily in the role of hemostatic regula-

tion. The inducible form (COX-2) is expressed constitutively in the central nervous 

system, is activated by cytokines and mitogens, and acts in formation of prostaglan-

dins in inflammatory response. Ringbom et al. [138] have demonstrated that DHA 

and EPA are effective in inhibiting COX-1- and COX-2-catalyzed prostaglandin bio-

synthesis with an in vitro assay. COX-2 showed higher potency. Corey et al. [139] 

discuss potential for DHA to operate as a competitive inhibitor of COX. COXs are 

activated in response to PLA2 activation and free LCPUFA concentration.

Table 2. AMD-associated processes usually increase enzyme expression or activity of PLA2, COX, 

and LOX

Disease-associated 

factor 

Enzyme

PLA 2 COX LOX

Ischemia [3] ↑ PLA2 activity [107, 

108]

↑ COX activity [109, 

110]

↑ LOX activity [111]

Light exposure [112] ↑20:4ω–6 release [113] ↑ COX-2 production 

[114]
↑ LTB4 production 

[115]

Redox balance [6] ROS ↑ PLA2 activity 

[116]

ROS ↑ COX-2 mRNA 

[117, 118]

ROS ↑ 5-LOX activity 

[119]

Cell cycle [3] ↑ [116] Necrosis ↑ COX-2 

mRNA [120]

 

Inflammation [121] ↑ PLA2 activity [122] PAF ↑ COX-2 mRNA 

[123–125]

5-LOX ↓ with Rx [126]

Aging [2] ↑ [127] ↑COX-2 in senescent 

cells [128]

 

PLA2 = Phospholipase A2, COX = cyclooxygenase, LOX = lipoxygenase, Redox = oxidation-reduction; 

ROS = reactive oxygen species; PAF = platelet-activating factor; ↑ = increases; ↓ = decreases.
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LOX in Eicosanoid Biosynthesis. 5-LOX converts AA or EPA to hydroperoxides 

(hydroperoxyeicosatetraenoic acids, HPETE); this process involves removal of hydro-

gen at carbon 7 and insertion of molecular oxygen at carbon 5. HPETE is essential 

for leukotriene biosynthesis; it may also be reduced to hydroxyeicosatetraenoic acid 

(HETE). Activation of 5-LOX is modulated by Ca2+, ATP, and 5-LOX-activating pro-

tein. 5-LOX metabolites act in immunoregulation within the inflammatory response 

[reviewed in 140]. LOXs are activated in response to PLA2 activation and free LCPUFA 

concentration. 12- and 15-LOX are other LOX enzymes that catalyze conversion of 

EPA and AA to other potent compounds of physiological significance.

Ischemia, O2 Delivery, and Hemodynamics in AMD. Retinal ischemia and concom-

itant hemodynamic change is associated with AMD [141, 142]. Lipid-based modula-

tors of retinal ischemia operate as paracrine and autocrine effectors within blood and 
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Whole Genome Approach to Study LCPUFA-AMD Relationships 117

on vascular membranes to alter blood flow and O2 regulation. LCPUFAs are precur-

sors to vasoregulatory thromboxanes (TX) and prostaglandins (PG) affecting blood 

flow [143], vasomotility, platelet activity, and platelet aggregation [88–91]. As precur-

sors to lipid mediators and endogenous ligands to nuclear transcription factors, ω–3 

LCPUFAs are associated with beneficial or non-damaging cellular response in vascu-

lar systems subjected to physiologic stresses that alter blood flow, oxygen delivery [70, 

143–148] and lipoprotein metabolism [50, 149, 150].

Chronic Light Exposure and AMD. Under normal physiological conditions, retinal 

photic damage is unlikely to occur, despite the high density of photosensitive com-

pounds (chromophores) and the chronic nature of light exposure. Findings on sun-

light exposure and AMD are equivocal [151], however photic damage is difficult to 

measure in free-living humans. Boulton et al. [112] review plausible processes that 

may operate in retinal diseases associated with an overstimulation of photorecep-

tors; in some cases, models of chronic light exposure may offer important insight to 

relationships between photoreceptor activity and AMD. Cellular response to chronic 

light exposure (light adaptation) alters rhodopsin and membrane fatty acid concen-

tration. As a result of this regulation the healthy retina exhibits a stable capacity for 

photon capture that is independent of stimulus intensity. In this way cells maintain 

sensitive response to light without sustaining injury from high metabolic demand. 

DHA may impact this process, as IRBP, a key transport protein involved in photo-

pigment regeneration, contains a high-affinity DHA-binding site [152, 153]. Light 

exposure leads to transformation of 11-cis-retinaldehyde to all-trans-retinaldehyde 

(a chromophore with a peak absorption spectrum in the range of high-energy short-

wavelength light associated with photic damage) and all-trans-retinol (a by-prod-

uct of phototransduction with membranolytic characteristics) [112]. The cycle of 

rhodopsin regeneration from all-trans-retinaldehyde to 11-cis-retinaldehyde and 

reduction of all-trans-retinol is implicated in photoreceptor survival. IRBP trans-

ports regenerated 11-cis-retinaldehyde from the RPE to the photoreceptor. Chen et 

al. [152] reported that DHA rapidly and specifically displaced 11-cis-retinaldehyde 

from IRBP of bovine samples and suggest that the gradient of DHA between RPE 

(3.5% of total lipids as DHA) and photoreceptor cells (20% of total lipids as DHA) 

would enable a swap of 11-cis-retinaldehyde for DHA as IRBP approaches the RPE. 

All-trans-retinol exhibits a high affinity to IRBP. As the protein comes in contact 

with the DHA-rich photoreceptor, the 11-cis-retinoid may be released, allowing 

DHA to bind in its place. All-trans-retinol also exhibits a high affinity to the receptor 

in and may thus bind to the complex as it approaches the outer segments in transit 

to the RPE.

In the healthy retina, light adaptation is related to reduction of oxidative stress, as 

it leads to a decrease in photoreceptor oxygen consumption [142]. Organisciak et al. 

[154] provide evidence to suggest that light damage and photopigment concentration 

affect oxidative processes since heme oxygenase, an oxygen-sensitive stress protein, is 

upregulated by retinal photic injury and rhodopsin loss.
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Retinal Energy Production, Regulation, Metabolism, Reduction-Oxidation Balance 

and AMD. Beatty et al. [6] discuss how natural characteristics of the retina affect cel-

lular oxidation-reduction (redox) balance to favor oxidation. These are: the volume 

of O2 consumption required to support the metabolic needs of the photoreceptors, 

the high concentration of photosensitizing compounds in the photoreceptors and 

RPE, the high concentration of PUFAs in photoreceptors, and active phagocytosis 

of photoreceptor outer segments by the RPE. The metabolically active neural retina 

supports energy requirements with ATP produced from oxygen and nutrient-based 

substrates (fatty acids and glucose, pyruvate, and lactate) within photoreceptor inner 

segment mitochondria. As a means of supporting the metabolic needs of the cell, 

photoreceptor inner segments are densely packed with these with organelles.

Mitochondria are the major site of ROS generation and gains in energy process-

ing efficiency are believed to lower production rates and volume of these compounds. 

ROS can damage bases in nucleic acids, amino acid side chains in proteins, and unsat-

urated bonds in fatty acids. Mitochondria are the main site for superoxide anion (O2
–•) 

generation; because it is highly reactive, superoxide is unlikely to exist far from mito-

chondria-dense cytosolic regions. The superoxide anion is produced via addition of an 

electron to molecular oxygen; it may react with nitric oxide (NO) to form peroxyni-

trate (ONOO–). Superoxide may also be converted to hydrogen peroxide. Hydrogen 

peroxide has a long enough half-life to allow it to travel to the nuclear domain; hydro-

gen peroxide oxidizes –SH groups of resident proteins and reacts with divalent metal 

catalysts (released from injury of hemolysis), and via single electron transfer, yields 

highly reactive hydroxyl radicals. The hydroxyl radical is the most ROS in the body. 

The half-life of the hydroxyl radical is short (~10–8 s), but it has a relatively high oxida-

tion potential. The hydroxyl radical can be formed in the nucleus and produce covalent 

cross-linking of nucleic acid bases. The hydroxyl radical reacts with esterified mem-

brane lipids to yield lipid radicals. Lipid radicals combine with oxygen to yield highly 

reactive lipid peroxyl and –hydroperoxyl radicals. Lipid peroxyl and –hydroperoxyl 

radicals exist mainly in biological membranes rich in PUFA. Phospholipid bilayers of 

cell membranes, when concentrated with PUFAs, are rich sources of electrons used to 

reduce ROS. Balazy and Nigam [127] review the multiple aspects of lipid peroxidation. 

Free radicals extract hydrogen from unsaturated bonds of membrane lipids, yielding 

lipid peroxyl radicals and lipid peroxides. Adjacent fatty acids are subsequently oxi-

dized in the attempt to reduce the peroxyl radical to a stable compound.

DHA may be important as a structural or signaling molecule (or precursor for 

a molecule) in mitochondrial function. DHA-supplemented primary photoreceptor 

cultures exhibit no change in proportion of cells maintaining mitochondrial mem-

brane potential after exposure to oxidative stress from paraquat (a superoxide anion 

generator), while 50% of cells in unsupplemented cultures cannot sustain function 

[41]. A 20% higher proportion of cells with functional mitochondria are observed 

in the same model system when comparing DHA- and DHA-free cultures exposed 

to ambient air [42]. Brenna and Diau [155] report that brain DHA concentration 
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increases directly as a function metabolic of rate in vervet monkeys and suggest that 

DHA may act as an essential structural element in bioenergetic processes.

A number of model systems have demonstrated increased efficiency of ATP pro-

duction and energy use within mitochondrial membranes of cardiac tissue in animals 

with higher levels of phospholipid ω–3 LCPUFAs [156]. After ischemic challenge, 

recovery of cardiac mitochondrial function in rats fed a fish oil diet was better than 

that observed in a group consuming an ω–3 LCPUFA-free diet [157]. These results 

suggest that ω–3 LCPUFAs enhance processes of energy metabolism with minimal 

cost of energy substrate expenditure. It is currently unknown whether ω–3 LCPUFAs 

may influence efficiency of energy production within the retina.

Age-Related Developmental Processes and Chronic Environmental Exposures in 

AMD. Structure and metabolic efficiency of the retina changes across developmental 

periods. These events may be driven by systemic development processes or exposures 

and we offer information in this context. Pieri [158] notes the kinetics of aging are 

impacted by multiple causes and presents biochemical evidence to support the free 

radical theory of aging. This theory evolved from its original form (oxygen is a causal 

factor of aging) to the oxidative stress theory (age-related injury in cellular systems 

may result from an insufficient antioxidant potential and excessive oxidative stress 

that coexists with insufficient damage repair and detoxification activity). Yu and Yang 

[159] provide elements of the oxidative stress theory: (1) there is a diverse physi-

ological origin of reactive species (oxygen, glucose, protein, DNA, NO, aldehyde); 

(2) there is value in assessing the balance of oxidants to antioxidant defense systems 

– defense processes and factors include cellular compartmentalization, DNA repair, 

antioxidant enzymes, antioxidant vitamins, other compounds with antioxidant prop-

erties, and (3) there are various types of reactions between ROS and other bioactive 

molecules – these include damage, damage repair, detoxification. Beatty et al. [6] sug-

gest changes in oxidant load, elastin, collagen, and mitochondrial and nuclear DNA 

as putative pathogenic factors associated with age-related oxidative retinal damage. 

These authors observe that exogenous and endogenous retinal defense systems are 

compromised with advancing age.

Mitochondrial structure and function are affected with age [160]; these changes 

may lead to increased production of ROS. In addition to the potential effects of age-

related cumulative oxygen load, there is a concomitant alteration in tissue status of 

aqueous and lipid-soluble vitamins with antioxidant properties [reviewed in 112]. 

Mitochondrial aging involves membrane composition and fluidity alterations that are 

purported to negatively affect biophysical response in bioenergetics. Study of this topic 

is germane to issues discussed throughout this work because the bulk of free radicals 

in retina are derived from mitochondrial respiration. Aging membranes become less 

fluid and fluidity is determined largely in part by membrane lipid concentration and 

composition (phospholipid species, fatty acid acyl chain length, number of double 

bonds, position of the first double bond from the methyl terminal, phospholipids-

to-cholesterol ratio). Mitochondria produce ROS that target membrane lipids. The 
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role of mitochondria in AMD is discussed in the section above and has been a central 

focus in our research.

The biochemical nature of DHA and AA and the selective tissue distribution of 

these compounds to metabolically active retinal tissue are paradoxical, as it would 

appear to facilitate formation of lipid radicals, lipid peroxyl radicals, and lipid perox-

ides. The importance of LCPUFAs in the retina is indicated by the efficient conserva-

tion and use of these ‘easily oxidized’ lipids in areas highly susceptible to oxidative 

stress and under conditions that facilitate production of ROS [47]. There is evidence 

to suggest that foveal regions exposed to highest intensity light have lower concen-

tration of LCPUFAs [161]; in age-related (chronic) retinal disease the fovea is often 

spared until late stages of disease.

In vitro studies generally report reactive LCPUFA peroxidation in response to 

energy or oxygen exposure, implicating these compounds as ‘suicide antioxidants.’ 

In contrast, most in vivo studies have reported relationships in the direction of ben-

efit. Muggli [162] reviews studies reporting relationships of ω–3 LCPUFA or fish 

intake with ROS-mediated events, effects on ROS biomarkers, and effects on anti-

oxidant defense systems. Free radical-induced hemolysis [163] and in vitro LDL oxi-

dation [164] were both reduced in samples from people on fish oil diets. Urinary 

F2-isoprostanes are in vivo markers of lipid peroxidation and oxidant stress. Non-

smoking, treated-hypertensive, type 2 diabetic subjects consuming 4 g/day of puri-

fied EPA and DHA had lower levels of this biomarker than a matched comparison 

group consuming an olive oil supplement [165]. Fish oil exposure is also associated 

with reduction in superoxide anion generation in human samples [166, 167]. In some 

cases, in vivo oxidation of LDL was not altered as a function of LCPUFA intake [168–

170]; in others it was decreased [171]. In elderly subjects, ω–3 LCPUFA intake at low 

doses (180 mg/day) was associated with decreases in oxidative stress within platelets 

[88]. At higher doses (50 μmol/l) DHA operated as a pro-oxidant [172].

An in vitro study on human cells reported an age- and area-related susceptibility 

to peroxidation, with higher posterior pole oxidation within tissue from the old-

est subjects [173]. The oxidative damage of peripheral retina did not vary with age. 

Rotstein et al. [40] applied an in vitro model of oxidative stress on pure rat retina 

neurons to elucidate a mechanism by which DHA may operate as a neuroprotec-

tive factor. After primary retinal cells were exposed to an environmental oxidant 

that generates the superoxide anion, they were observed to die by apoptosis; loss of 

mitochondrial membrane integrity was seen as a key factor in this event. Addition of 

DHA to the cultures protected photoreceptors from oxidative stress-induced apop-

tosis. Authors speculate that DHA operates to preserve mitochondrial membrane 

structure and function by reducing Bax and increasing Bcl-2 expression. In rats, 

lower DHA tissue status is associated with lower susceptibility to light damage from 

acute exposure of 700–800 lx followed by 90 min of darkness [174]. After exposure 

to intense green light using intermittent or hyperthermic light treatments, rats fed 

a depleted ω–3 diet exhibited better structural outcomes than rats fed a linolenic 
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acid-enriched diet from flaxseed [175]. A series of intriguing studies on the role of 

CYP450 EPA-derived epoxides in regulation of vascular systems is now emerging to 

suggest that oxygenated ω–3 LCPUFAs may have positive physiologic significance 

[176].

Cellular Differentiation and Survival. DHA acts as a trophic molecule in photore-

ceptor development, differentiation, and growth. It works in part by increasing opsin 

expression and apical process differentiation [37, 38, 177]. The proportion DHA-fed 

cells expressing opsin was significantly higher than in those from a DHA-free culture. 

Opsin combines with 11-cis-retinal to form rhodopsin; the relevance of this issue for 

retinal health is that expression of the opsin gene may be required for assembly of 

photoreceptor disc membranes [178]. Although DHA may not act in determination 

of photoreceptor fate, it was shown to enhance differentiation in cone-rod homeobox 

(Crx)-expressing cells [43]. Crx in photoreceptor progenitors is necessary for expres-

sion of transcripts associated with photoreceptor maturation.

DHA or its metabolities prolong retinal cell survival and prevent apoptosis in 

model systems of photoreceptors [37–40, 177] and RPE cells [7, 9, 10, 14, 46]. The 

proportion photoreceptors supplemented with DHA that survived for 11 days in vitro 

was approximately twice that observed from cultures existing on DHA-free media. 

Measures of apoptosis (fragmented photoreceptor nuclei) suggested a protective 

effect of DHA at post-plating days 7 and 11. In primary cultures of rat neural retina 

cells, DHA acted as a protective agent against oxidant- and ceramide-induced cell 

death by upregulating expression of the anti-apoptotic factor, Bcl-2 [179]. Ceramide 

is a lipid-based mediator of apoptosis; DHA acts via ceramide glycosylation to limit 

endogenous levels of this molecule [179]. In photoreceptor cultures DHA was also 

shown to act on the ERK/MAPK pathway to prevent apoptosis [42]. DHA-derived 

neuroprotectin 1 acts as a potent cytokine- and oxidant-induced factor preventing 

apoptosis in RPE cell cultures [8]. In these systems NPD1 decreased proapoptotic 

proteins Bax and Bad, upregulated the anti-apoptotic Bcl-2 and Bcl-x(L) expression, 

inhibited oxidative-stress-induced caspase-3 activation [7, 14]. Detailed coverage on 

the role of NPD1 in the retina and its relationship with neurotrophins exists else-

where in this issue of WRND.

Inflammation and Lipid-Based Molecules. Calder et al. [61, 180, 181] pro-

vide a number of excellent reviews on the modulatory role of ω–3 LCPUFAs in 

immune and inflammatory processes. We have reviewed the putative relationship 

of LCPUFAs with retinal inflammation in detail elsewhere [13]. Inflammation, the 

immediate biologic response to injury or infection, is the result of increased capil-

lary permeability and blood flow. Increased capillary permeability enables regula-

tory proteins (antibodies, complement, and cytokines) and leukocytes (monocytes, 

macrophages, natural killer (NK) lymphocytes, and granulocytes) to pass from the 

bloodstream across the vascular endothelial wall. Integration of this innate immune 

response with an acquired one subsequently occurs as activated macrophages and 

monocytes present antigen to cytotoxic (CD8+) and helper (CD4+) T lymphocytes. 
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Helper T lymphocytes express CD4+ receptors that recognize peptide fragments 

on cell surfaces that are bound in the class II major histocompatibility complex 

(MHCII). These peptides are derived from extracellular pathogens that have been 

phagocytosed by macrophages or endocytosed by antigen-presenting cells (mac-

rophages, dendritic cells, B lymphocytes). Inflammation activates PLA2, COX, and 

LOX. An emerging evidence base suggests that inflammatory processes [121] as 

well as genes affecting and affected by such processes [5] are implicated processes 

and factors in AMD pathogenesis, and ROP. ω–3 LCPUFAs act as the precursors 

to a number of bioactive lipid-based immuno- and inflammatory eicosanoids, 

resolvins, and neuroprotectins [7–10, 14, 182]. Metabolic pathways of eicosanoid 

biosynthesis are presented in figure 1.
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Fig. 2. Impact of ω–3 LCPUFAs on inflammatory mediators derived from arachidonic acid. AA = 

Arachidonic acid (20:4ω–6); COX = cyclooxygenase; DHA = docosahexaenoic acid (22:6ω–3); EPA = 
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ω–3 LCPUFAs modulate production of AA-derived eicosanoids and this is impor-

tant for a number of reasons. First, LTB4 is associated with TNF-α production [183]. 

TNF-α mediates production of a number of potent pro-inflammatory and immu-

noregulatory cytokines [180]. Also, ω–3 LCPUFA-derived eicosanoids may oper-

ate directly on factors in the immune system or via a number soluble mediators, the 

inflammatory phospholipids platelet-activating factor (PAF), NO, and tyrosine and 

serine/threonine kinases. While AA-derived eicosanoids play different roles in the 

inflammatory process, they are all associated with vascular leakage. PGE2 decreases 

T-cell proliferation, lymphocyte migration, and secretion of IL-1 and IL-2. PGI2 blocks 

leukocyte aggregation, T-cell proliferation, and lymphocyte migration and secretion 

of IL-1 and IL-2. TXA2 increases lymphocyte proliferation. LTB4 increases leukocyte 

chemotaxis and aggregation, T-cell proliferation, and the release of TNF-α, IFN-γ, 

IL-1, and IL-2. Figure 2 presents one scenario on the putative effect of ω–3 LCPUFAs 

and their metabolites on AA metabolites (and associated compounds) implicated in 

inflammatory processes.

AA-based COX and LOX metabolites are extremely potent at low concentrations 

and act as autocoids through G-protein-mediated signaling pathways to increase 

cAMP levels at the site of biosynthesis. PGE2, PGI2, TXA2, and LTB4 are the most 

potent AA-derived angiogenic eicosanoids. PGE2 increases vasodilation and enhances 

vasodilatory effects of bradykinin and histamine. PGI2 induces vasodilation and 

cAMP production and inhibits leukocyte and platelet aggregation – thus the tissue 

system in which this molecule acts is an important consideration when speculating 

about its role in health and disease. TXA2 induces platelet aggregation and vasocon-

striction and LTB4 induces vascular permeability. As capillary integrity is broached, 

vascular leakage and recruitment of immune system cells occurs.

The immune system cells are capable of producing pathogenic inflammatory 

mediators and angiogenic growth factors. The existing instability of the capillary 

basement membrane then permits out-migration of activated vascular endothelial 

cells seen in abnormal angiogenesis. AA metabolites of the COX pathway induce 

vascular endothelial cell migration and tube formation [184]. The AA-derived LOX 

product 12-HETE promotes tumor angiogenesis through induction of mitogenic 

activity and migration in microvascular endothelial cells [185, 186]. 12-HETE also 

induces cell surface integrin αvβ3 expression [187, 188] in cell cultures from rodent 

models [187, 188]. AA-derived leukotrienes affect the production of TNF-α [189], a 

potent cytokine activating numerous cascades that modulate systemic inflammation 

and apoptosis. ω–3 LCPUFAs alter both substrate and enzymes involved in the pro-

duction of immuno- and vasoregulatory eicosanoids.

Calder [61, 180] proposes mechanisms by which ω–3 LCPUFAs may reduce the 

effect of AA-derived angiogenic eicosanoids – these are: (1) ω–6-based eicosanoid 

precursor (AA) displacement. This action alters AA availability for catalysis in mem-

brane phospholipids. (2) PLA2 inhibition. PLA2 is the enzyme necessary to release 

the precursor for metabolism. (3) Biosynthetic eicosanoid synthase and peroxidase 
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quenching. These enzymes are used for series-2 prostanoid and series-4 leukotriene 

production. (4) Decreased 3-series (PG and TX) and the 5-series (LT) eicosanoid 

production. ω–3 LCPUFAs act as the precursors to these molecules. 3- and 5-series 

eicosanoids are in most cases less potent than AA-based eicosanoids of the 2- and 

4-series. In many cases the ω–3 LCPUFA metabolites have been linked to protective 

actions in model cell systems.

AA-derived LTB4 affects the production of TNF-α [189]. TNF-α is detectable in 

retinal vascular tissue and extracellular matrix of fibrovascular tissue in people with 

vasoproliferative diabetic retinopathy (PDR) [190]. A TNF-α gene polymorphism in 

the MCH of people with non-insulin-dependent diabetes mellitus (NIDDM) is asso-

ciated with PDR and vitreous levels of soluble TNF-α receptors were higher in eyes 

with PDR than in eyes of healthy people without diabetes [191]; these results were 

interpreted to represent a form of genetic susceptibility [192]. People with insulin-

dependent diabetes mellitus (IDDM) and PDR have higher concentrations of soluble 

TNF-α receptors than both (1) people with IDDM who are PDR-free, and (2) healthy 

controls [193]. TNF-α production and expression are also modified in a rodent model 

ischemia-induced retinopathy affecting retinal vasculature [194] – while ischemia 

may play less of a part in AMD pathogenesis than in that of PDR, it is reasonable to 

suspect that the shared neovascular component may be modulated by similar factors 

and processes.

A large body of evidence implicates ω–3 LCPUFAs in alteration of the innate and 

acquired immune systems and the inflammatory response within neural and vasucu-

lar tissue. Model studies on human cell lines incubated with ω–3 LCPUFAs demon-

strated decreased: (1) monocyte cell surface antigen presentation [195] and TNF-α 

and IL-1β expression [196]; (2) neutrophil superoxide presentation [167]; (3) NK 

lymphocyte activation [197, 198], and (4) lymphocyte proliferation [197, 199–204], 

antigen expression [205], and IL-2 production [197, 199]. De Caterina et al. [206] 

have added DHA to adult saphenous vein endothelial cell cultures activated by cytok-

ines to observe reduced expression of IL-6 and IL-8.

Animal feeding studies demonstrate differences in immune system function 

in comparison of animals receiving ω–3 LCPUFA-rich diets to those consuming 

ω–3 LCPUFA-free diets; in these studies animals on ω–3 LCPUFA-rich diets show 

decreased: (a) macrophage-based ROS production [207–210], cell surface antigen 

presentation [211, 212], TNF-α expression [183, 213–215], IL-1β expression [183, 

213–215], IL-6 expression [183, 213–215], and IFN-γ receptor expression [216]; (b) 

monocyte IL-1β and TNF-α expression [217]; (c) NK cell activation [218–221]; (d) 

cytotoxic T-lymphocyte activation [222], and (e) lymphocyte proliferation [218, 222–

232] and production of IL-2 and IFN-γ [233].

Human feeding studies demonstrate similar results at high doses of ω–3 LCPUFAs. 

Human studies also emphasize the importance of considering the balance of ω–3/ω–6 

LCPUFAs. Three [234–236] of four studies demonstrate reduced monocyte chemot-

axis in populations consuming ω–3 LCPUFA-rich diets. Subjects in the study that 
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did not demonstrate a difference between dietary groups [237] consumed a relatively 

lower amount of ω–3 LCPUFAs. Monocyte surface antigen expression, NK lympho-

cyte activation [238] and lymphocyte proliferation [239, 240] decreased in people 

consuming high levels of ω–3 LCPUFAs. The relationship between intake of ω–3 

LCPUFAs and production of pro-inflammatory cytokines is not clear from studies 

in human populations. Approximately half [236, 239, 241, 242] of the existing stud-

ies [237, 240, 243–245] show an inhibitory effect of ω–3 LCPUFA feeding on TNF-α 

expression. Four [202, 236, 239, 241, 242] feeding studies demonstrated an inhibitory 

effect on IL-1β expression while others did not [237, 240, 243–246]. An inhibitory 

effect on IL-6 expression was reported from two [239, 247] of four [237, 244] stud-

ies. All feeding studies examining the effect of ω–3 LCPUFAs on IL-2 production 

and IFN-γ production demonstrated an inhibitory effect in people consuming ω–3 

LCPUFAs [239, 242].

In addition to their effects on AA-eicosanoid metabolism, ω–3 LCPUFAs may 

influence vascular function and inflammatory response via modulation of intracel-

lular signaling pathways and transcription factor activation [102, 103]. DHA and EPA 

act as natural ligands to a number of nuclear hormone receptors that affect transcrip-

tional activities. Among these are PPAR [105] and RXR [104]. The activated PPAR-γ/

RXR heterodimer regulates genes modulating induction of inflammatory signaling 

pathways (NF-κΒ, MAP kinase pathways, IL-2 secretion). DHA binds to specific 

DNA motifs on cis-regulatory elements in promoter regions of target genes. DHA 

binding impacts activation of the PPAR and RXR receptors that subsequently operate 

as transcription factors [248]. α, β, and γ isoforms of PPAR receptors are affected by 

DHA [248–250]. DHA can act directly in transcription, as it is concentrated in PS, a 

negatively charged aminophospholipid known to activate protein kinases involved in 

gene expression [54]. DHA may also operate at the posttranscriptional level to induce 

changes of phosphorylation events in native mRNA processing, mRNA transport 

and stabilization, and mRNA degradation rates [178]. These pathways modulate pro-

duction of inflammatory mediators. The activated PPAR-γ/RXR complex also leads 

to cell proliferation, production of adhesion molecules (VCAM-1, ICAM-1, E- and 

P-selectins) and modulation of endothelial-leukocyte adhesion pathways in vascular 

tissue [251]. Jump [252] and De Caterina and Madonna [57] provide review of the 

role and actions of dietary PUFAs in regulation of gene transcription.

Increased levels of inflammatory mediators are associated with AMD [121]. How 

may proliferative retinopathies be affected by inflammation? A number of retinal 

diseases characterized partially by an inflammatory component involve leukocyte 

migration and adhesion within the retinal vasculature; this is preceded by induc-

tion of inflammatory (TNF-α, VCAM-1) and redox-sensitive genes (NF-κΒ). TNF-α 

plays a dominant role in modulating endothelial adhesion molecules. Ischemia- 

and inflammation-induced activation of COX-2 regulates the production of VEGF. 

Both VEGF and TNF-α upregulate ICAM-1 via NF-κΒ and serine/threonine kinase 

Akt-PI3 kinase-eNOS signaling pathways [253]. PKC may be an important factor in 
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retinal vascular pathology; PKC activates PLA2 [254]. Recall that PLA2 is responsible 

for releasing esterified AA as a substrate for COX- and LOX-based eicosanoid pro-

duction. These processes are associated with blood-retinal barrier degradation and 

manifested in increased vascular permeability. Extant data from model systems sug-

gests relationships between angiogenesis and enzymes synthesizing eicosanoids from 

LCPUFAs. Nude mice with human breast cancer xenografts and fed ω–3 LCPUFA-

rich diets showed displacement of AA from tumor cell membranes, a reduction in 

PGE2 and 12-HETE [255, 256], loss of COX-2 mRNA expression [257], and reduction 

in COX-2- and COX-1-immunoreactive protein [258]. Both EPA and DHA inhibit 

COX-2 and COX-1 induction of PG biosynthesis [138]. There may be a link between 

this pathway, growth factor expression, and angiogenesis as the selective COX-2 

inhibitor celecoxib (SC-58635) is capable of regulating production of VEGF and 

VEGF receptors in animal models of retinal neovascularization [259, 260]. This agent 

is also effective in suppressing FGF-2-induced corneal angiogenesis in rats [261].

Table 3. Vasoregulatory or vasotrophic factors affected by LCPUFAs, eicosanoids, COX, or LOX

Molecule Reference

Angiogenin Angiogenin → PLA2
262

Angiopoietin (Ang)-2 DHA ↓ Ang-2 263

Angiotensin II EPA and DHA ↑ response to Ang II in 

diabetes

264

Fibroblast growth factors: acidic/

basic

EPA ↑ cell migration in response to 

bFGF

265 (no effect), 266

Follistatin PGE2 ↑ follistatin-related gene 

(FLRG) mRNA

267

Granulocyte colony-stimulating 

factor (G-CSF)

COX-2 inhibitor ↓ G-CSF mRNA 268

Interleukin-8 (IL-8) DHA ↓ endothelial IL-8 expression 206

Leptin EPA and DHA ↓ leptin secretion 269, 270

Platelet-derived growth factor-BB EPA � PDGF-induced mitogenesis 271–273

Transforming growth factor-β EPA ↑ TGF-β secretion 272, 274

Tumor necrosis factor-α EPA and DHA ↓ TNF-α mRNA 275–278

Vascular endothelial growth factor EPA ↓ VEGF and � VEGF receptor 

expression

265, 279–284

→ = Activates; ↑ increases; � = suppresses; ↓ decreases.
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Inflammation, Vascular Pathology, and Proteins Impacting and Impacted by Lipid-

Based Molecules. A number of immunoregulatory cytokines, angiogenic growth fac-

tors, and their signaling pathways are affected by and affect LCPUFAs, eicosanoids, 

and PLA2, COX, and LOX activities (table 3). We review VEGF, TGF-β, TNF-α, angio-

genin, angiopoietin-1, FGF, follistatin, G-CSF, IL-8, leptin, and PDGF-BB. Cytokines 

are regulatory proteins that function as chemical messengers between natural and 

acquired immune systems and within the acquired immune system. Cytokines are 

also ligands for cell surface receptors that induce cellular growth, development, and 

activity related to vascular remodeling. They can potently induce capillary leakage and 

leukocyte migration. The LOX-5-catalyzed AA-metabolite (LTB4) directly increases 

the production of the pro-inflammatory cytokine TNF-α [189]. Through its effect on 

this factor, LTB4 indirectly enhances production other pro-inflammatory cytokines 

(IL-1, IL-2, IL-8, IL-6, IFN-γ) and the inflammatory lysophospholipid PAF. Figure 2 

illustrates these relationships.

Angiogenic growth factors operate directly or indirectly on endothelial cells. 

Direct activity occurs via endothelial cell-surface receptors and induces endothelial 

cell migration and proliferation. Macrophage- and mast cell-derived polypeptide 

growth factors such as vascular endothelial growth factor (VEGF) and basic fibro-

blast growth factor (bFGF) operate as such. Indirect mechanisms act via chemotactic 

induction in macrophages that subsequently secrete VEGF and bFGF. This is the case 

of the eicosanoids reviewed above.

VEGF is a 45-kDa glycoprotein produced in the neural retina by astrocytes. It 

has specificity to several tyrosine kinase receptors (Flk-1, Flt-1) and has been iden-

tified as a central factor involved in retinal vasoproliferation [285]. VEGF is a key 

molecule in induction of: endothelial cell migration and proliferation, microvascular 

permeability, endothelial cell release of metalloproteinases and interstitial collage-

nases, and endothelial cell tube formation [286]. VEGF stimulates capillary mesh-

work formation in vivo [283] and has thus been implicated as a proangiogenic factor 

in ischemia-induced proliferative retinopathies [287–289]. Insulin-like growth fac-

tor (IGF-1) modulates VEGF-induced activation of MAPK. MAPK is involved in 

endothelial cell proliferation. Low levels of IGF-1 inhibit VEGF-induced activation 

of protein kinase B (Akt). The Akt/PI-3 kinase system modulates processes control-

ling vascular endothelial cell activation and survival, as well as leukocyte migration 

and adhesion.

In some cases, LCPUFAs affect activation and expression of VEGF-specific 

tyrosine kinase receptors. EPA affected VEGF-induced proliferation of bovine 

carotid artery endothelial (BAE) cells by inhibition of the fetal liver tyrosine kinase 

1 (Flk-1) receptor, a factor essential for endothelial cell differentiation and prolif-

eration. Neither DHA nor AA affected this system. The fms-like tyrosine kinase 

receptor (Flt-1), a factor involved in vessel construction [283], was not affected 

by EPA, DHA, or AA. bFGF-induced endothelial cell proliferation was not inhib-

ited by EPA, DHA, or AA. However, EPA inhibited VEGF-induced activation of 
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MAPK. EPA downregulated Flk-1 receptor expression in a dose-dependent manner 

and upregulated Flt-1 receptor expression [283]. It also inhibited endothelial cell 

tube formation in vitro [290]. EPA-treated endothelial cells had low MAPK activity 

relative to cells that were not incubated with EPA. The mechanism of VEGF recep-

tor downregulation may occur at the tyrosine kinase NF-κΒ site as EPA treatment 

caused suppression of NF-κB activation. NF-κB is a nuclear transcription factor 

that upregulates COX-2 expression, NO synthase, and intracellular adhesion mol-

ecule (ICAM) [291].

ω–3 LCPUFAs may also influence activation of IGF-1 pathways necessary to 

mediate effects of VEGF. In a study on burn patients (burns reduce IGF-1 levels) 

applying a nutritional intervention with a 15% fat diet with fish oil (50% of total 

dietary lipids from fish oil vs. 15 and 30% fat without fish oil), subjects returned to 

normal serum IGF-1 concentrations by 30 days post-intervention. Subjects in the no 

fish oil groups were consistently lower on IGF-1 and did not approach normal values 

within the first month of the study [292]. IGF-1 and VEGF interact in retinal neo-

vascularization via the Akt/PI-3 kinase signaling pathway, a serine/threonine kinase 

activated system. DHA-enriched Neuro 2A cells survived a staurosporine-induced 

apoptotic signal through inhibition of normally observed decreases in Akt phos-

phorylation and activity [293]. Akt activity is essential for vascular endothelial cell 

survival [294].

Role of LCPUFAs in Structure and Function of Vascular Retina

The evidence base reviewed until this point suggests that ω–3 LCPUFAs have the 

capacity to modulate production and activities of a number of factors and processes 

implicated in retinal neovascularization, inflammation of retinal vasculature, and 

alterations in retinal capillary ultrastructure. Vascular pathology in AMD is localized 

predominantly within the choriocapillaris. Increased microvascular density is usually 

accompanied by alterations in the integrity of the capillary walls. Choroidal perme-

ability may lead to abnormal vascular remodeling, capillary leakage, inflammation, 

and thrombosis. These processes are manifested in vitreous hemorrhage, fibrovascu-

lar scarring, mechanical stress, and subsequent retinal detachment. Table 4 contains 

an overview of potential points in a neovascular cascade at which ω–3 LCPUFAs may 

exert a meaningful impact. Table 5 contains similar information in the context of a 

number of etiologic factors for AMD.

The following section contains an application of knowledge base discussed above 

within the framework of a genome-wide association study on functionally relevant 

gene sets and pathways. We started with a general approach to inquiry on the role 

of lipid-associated compounds in AMD for the purpose of conducting an unbi-

ased descriptive analysis that was optimized for discovery of novel relationships. 

Evidence converged to allow inference on a number of biologically credible expla-

nations of our findings. It is our hope that this work will be extended in replicate 

samples.
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Relationships of Advanced AMD with Lipid-Associated Gene Variants in the Age-

Related Eye Disease Study

The Age-Related Eye Disease Study (AREDS) was a US-based, multi-center, 12-year 

prospective project examining the clinical course of AMD and age-related cataract. 

Analyses of AREDS data on dietary ω–3 LCPUFA-AMD relationships yielded inverse 

(protective) associations of reported intake with prevalent neovascular AMD [12] 

and progression to geographic atrophy [26] (a neurodegenerative form of the dis-

ease). AREDS genetic samples were used in one of the first successful applications of 

microarray technology to identify susceptibility variants in a complex disease [318].

The single marker elucidated in our original genome-wide association study has 

led to a set of important findings on inflammatory and immunoregulatory processes 

in AMD pathogenesis. The polygenic nature of AMD and the variable expressivity in 

the disease also warrants study on joint action of functionally-related genes encoding 

elements of metabolic or signaling pathways. In the context of our ω–3 LCPUFA-

AMD relationships, we felt that it would be informative to examine the putative 

impact of sequence variants in genes encoding structures affecting and affected by 

lipid-based molecules as they relate to AMD. We used data from 508 AREDS partici-

pants examined in a genome-wide association study with a 100K microarray. Joint 

action models predicted a 99-fold increased susceptibility of advanced AMD from 11 

variants of 11 inositol-related genes (odds ratio = 99.2, p ≤ 1.0 × 10–17). Comparison of 

these findings against p value distributions from 1,500 analyses on randomly selected 

sets of single nucleotide polymorphisms (SNPs) (obtained from our complete panel 

of 96,774) indicated that these results were not likely due to random sampling error; 

in no instance did any of the 1,500 test models yield a p value <1.2 × 10–9. These novel 

results may provide meaningful insight into the role of molecular genetics in modify-

ing nutrient-AMD relationships.

Methods

Study Population

All data in this work are from elderly self-identified white, non-Hispanic US residents 

participating in the AREDS. Details on the design and sample demographics of the 

study exist in extant publications [319]. Our final experimental population contained 

368 people with advanced AMD and 141 people who had no clinical signs of AMD 

across the entire course of the study.

Outcomes

Masked professional graders at the University of Wisconsin Fundus Photography 

Reading Center ascertained phenotype annually across a 12-year period from stereo-

scopic color fundus images using a standardized and validated protocol. All photo-

graphs were taken with a standardized method by certified photographers. AREDS 



130 SanGiovanni · Mehta  · Mehta 

Table 4. Potential influence of ω–3 LCPUFAs at key points in the neovascular progression

Step in neovascular 

cascade

Putative action of ω–3 LCPUFAs

Growth factors bind on 

endothelial cells

VEGF Flk-1 expression inhibited in EPA-treated bovine carotid artery 

endothelial (BAE) cells. Flk-1 expression increased [283]

Activated endothelial 

cells send signals to the 

nucleus for production of 

signaling molecules and 

enzymes

EPA selectively inhibits VEGF-induced, but not bFGF-induced 

activation of MAPK [283]. Members of the ERK-MAPK family respond 

to proliferative and mitogenic stimuli, regulate changes in 

transcription, and are associated with cellular differentiation and 

proliferation. c-Jun amino-terminal kinase (JNK) and p38 MAPK 

pathways may be activated by exposures associated with retinal 

disease; these include hypoxia, ultraviolet light, inflammatory 

cytokines, osmotic shock, or environmental stress [295]. MAPKs are 

important mediators in endothelial barrier function [296]

Enzymatic BM digestion Incubation of human vascular ECs with EPA protects against gap 

junctional intercellular communication injury after hypoxia/

reperfusion challenge. Effect mediated by inhibition of tyrosine kinase 

activation [297]. EPA inhibits urokinase-type plasminogen (uPA) 

activator activity [298]. uPA catalyzes conversion of plasminogen to 

plasmin. Plasmin is a serine proteinase involved in conversion of fibrin 

to soluble forms. uPA implicated in retinal neovascularization and may 

affect cell associated proteolytic activity [299]

EC division and migration 

through BM

ω–3 LCPUFAs prevent serotonin-induced EC proliferation [300]. 

Bovine aortic endothelial cells, treated with 0–5 μg/ml EPA for 48 h, 

displayed dose-dependent suppression to VEGF-induced proliferation 

[283]. EPA inhibited cell growth in a dose-dependent manner in 

bovine carotid ECs cultured between collagen gels [290]. Prostacyclin 

(PGI2) is the main prostanoid in most vascular systems. PGI2 regulates 

vascular EC proliferation. DHA and EPA incubation led to changes in 

fatty acid composition of membrane phospholipids of human 

umbilical vein endothelial cells (HUVEC) co-incubated with allogeneic 

peripheral blood lymphocytes and resulted in reduced basal PGI2 

production [302]

Adhesion molecules or 

integrins (αvβ3, αvβ5) pull 

blood vessel sprouts 

forward.

Incubation of human adult saphenous vein endothelial cell cultures with 

DHA reduced endothelial expression of VCAM-1, E-selectin, ICAM-1, IL-6 

and IL-8 after challenge with IL-1, IL-4, TNF-α, or bacterial endotoxin 

[206]. Primary HUVECs activated with IL-1β produce ICAM-1, E-selectin 

and VCAM-1 transcripts. Both EPA and DHA attenuate induction of these 

adhesion molecules after challenge with IL-1β [303]

Matrix metalloproteinases 

(MMP) dissolve tissue in 

front of the sprouting 

vessel tip. As the vessel 

extends, the tissue is 

remolded around it

MMPs are a family of neutral zinc endopeptidases secreted as pro-

enzymes in extracellular areas. MMPs modulate aspects of angiogenesis, 

inflammation, and affect tissue remodeling through: degradation of 

specific extracellular matrix components; destruction of proteinase 

inhibitors, cell surface proteins, cytokines; and activation or release of 

signaling molecules and proteinases. Expression of MMPs is induced by 

cytokines, growth factors, and reactive oxygen species. Endogenous
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Step in neovascular 

cascade

Putative action of ω–3 LCPUFAs

 tissue inhibitors of metalloproteinases (TIMPs) bind non-covalently to 

zinc-dependent active site of MMPs to regulate their activity. MMP-2 

(Gelatinase A) and MMP-9 (Gelatinase B) operate against type IV 

collagens and laminins in vascular endothelial basement membranes. 

MMP-2 binds on vascular EC surfaces to αvβ3 integrin during capillary 

tube formation. MMP-9 is constitutively produced in the retinal 

ganglion cell layer. These MMPs exist in the interphotoreceptor matrix 

and are implicated in pathogenesis of retinopathy of prematurity and 

proliferative diabetic retinopathy [304]

MMP-2 and MMP-9 expression was elevated in C557Bl/J6 mice with 

ischemia-induced retinal neovascularization, relative to animals 

reared under normal conditions [305]. TIMP-1 (MMP-9 inhibitor) and 

TIMP-2 (MMP-2 inhibitor) were decreased within the same animals, 

indicating that these extracellular proteinases are important in retinal 

angiogenesis. The mechanism by which MMPs are expressed occurs 

via soluble mediators TNF-α and VEGF (not via the hypoxic insult 

introduced in the ischemic challenge) [306]. Serum MMP-2 and -9 

activity decreased in female CD-VAF rats fed DHA-containing diets 

with various compositions of EFAs and LCPUFAs, relative to a 

comparison group fed DHA-free diets [307]. CDF1 and BALB/c mice 

receiving diets enriched in DHA had lower MMP-9 activity in tumor 

tissue extract than animals fed an LCPUFA-free diet. MMP-9 activities 

were also significantly lower in animals consuming DHA + oleic acid 

and DHA + LA, relative to controls fed a DHA-free diet. Gelatinolytic 

(MMP-2 and -9) activities were not different between controls and 

animals consuming oleic acid, LA, EPA, and EPA + DHA enriched diets 

[308]. EPA treatment in nude mice prevented development of lung 

metastases from MDA-MB-435 human breast cancer cell mammary fat 

pad solid tumors. Incubation with yielded in a dose-related inhibition 

of cultured MDA-MB-435 cell 92-kDa type IV collagenase (MMP-9) 

mRNA expression [309]

ECs sprout from tubes Bovine carotid artery ECs treated for 2 days with EPA showed dose-

dependent inhibition of tube formation. AA increased tube formation, 

and docosahexaenoic acid had no effect [290]. DPA (22:5ω–3) 

suppressed tube-forming activity in endothelial cells induced by 

vascular endothelial growth factor [279]. ECs cultured in collagen gel 

and treated with EPA displayed a dose-dependent suppression of 

tube formation, VEGF-induced proliferation, and activation of p42/

p44 MAP kinase [265]

BM = Basement membrane, EC = endothelial cell, PDR = proliferative diabetic retinopathy, ROP = 

retinopathy of prematurity.

Table 4. Continued
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Table 5. Etiologic factors for AMD and putative actions of ω–3 LCPUFAs

Factor/process Putative pathogenic mode of action Putative action of ω–3 LCPUFAs

Neovascularization   

VEGF VEGF → vascular endothelial cell proliferation

VEGF → vascular endothelial cell migration

VEGF → vascular endothelial cell survival

VEGF → vascular endothelial cell permeability

VEGF → uPA + tPA → ECM degradation

VEGF → MMP → ECM degradation

VEGF ↔ NO → vascular hyperpermeability

VEGF → ICAM-1

EPA � VEGF KDR [265]

ω–3 LCPUFA � VEGF KDR [279]

EPA � VEGF Flk-1 [283]

EPA � urokinase activity [298]

DHA � MMP-2 [307]

DHA � ICAM-1 [206]

DHA � VCAM [206]

Angiopoietins Ang1 → pericyte recruitment → vascular 

integrity

Ang2 � Ang1

Ang2 + VEGF → neovascularization

DHA � Ang-2 [310]

Nitric oxide NO → integrin αvβ3 → endothelial cell 

migration

NO → integrin αvβ3 → endothelial cell 

different

VEGF ↔ NO → vascular hyperpermeability

VEGF → eNOS → NO → VEGF

eNOS → vaso-obliteration

eNOS → vitreous neovascularization

iNOS � VEGF receptor expression 

DHA → iNOS [311,312]

Extracellular matrix Integrins + ECM proteins → endothelial 

migration

TNF-α → αvβ3 → endothelial cell migration

MMP → ECM degradation

TIMP-3 � VEGF-ind. endothelial cell migration

DHA � TNF-α [196]

DHA � MMP-2 [307]

ω–3 LCPUFA → TIMP [313]

Oxidative stress

Reactive O2 intermediates Membrane lipid peroxidation

Mitochondrial DNA damage

H2O2 → p53/p21 → apoptosis

H2O2 � Bcl-2 � apoptosis

tBHP → caspase → mito. damage → apoptosis

H2O2 → VEGF in RPE → apoptosis

Fish oil → mitochondrial function [157]

Fish oil → ATP metabolism [314]

DHA → Bcl-2 [40]

DHA � caspase-3 [315]

DHA → Akt/PI3 pathway [293]

Hypoxia Hypoxia → VEGF in RPE

Hypoxia → Ang2

See VEGF and Ang sections of table

Lipofuscin/A2E Short wavelength light-induced RPE apoptosis

A2E� photoreceptor lysosomal degradation

Physical disruption of RPE cytoarchitecture

DHA → IRBP [152]
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Report 1 [319] contains details on the process of outcome ascertainment. Advanced 

AMD cases meet the following criteria: (1) presence in either eye of geographic 

atrophy or neovascular AMD defined as photocoagulation or other treatment for 

choroidal neovascularization (based on clinical center reports), or (2) photographic 

documentation of any of the following: non-drusenoid retinal pigment epithelial 

detachment, serous or hemorrhagic retinal detachment, hemorrhage under the retina 

or RPE, and/or subretinal fibrosis either at baseline or during the course of the study.

Our AMD-free group had good vision in both eyes and no existing eye disease. 

Controls were selected to be the oldest AREDS participants with DNA available who 

had a drusen area of <5 small drusen (<63 μm diameter) and no pigmentary abnor-

malities in both eyes at all visits for which fundus photographs were gradable. Both 

eyes had visual acuity of 20/32 or better measured by a standard protocol, ocular 

media was clear enough for good quality fundus photographs, and there was absence 

Factor/process Putative pathogenic mode of action Putative action of ω–3 LCPUFAs

AGE/RAGE AGE → RPE aging genes

AGE → VEGF in RPE

ω–3 LCPUFA � AGE [316]

Hemo-hydrodynamic Δ

Bruch’s membrane Thickening � diffusion � choroidal perfusion DHA → IRBP [152]

DHA �collagen aggregation [147]

Choriocapillaris ↓ diameter � choroidal perfusion → transport

↓ density �choroidal perfusion → RPE 

transport

DHA → vascular compliance [143]

Neutral fat deposits Modification of diffusion characteristics of BM DHA → IRBP [152]

RPE senescence 

Age AGE � gene expression lysosomal enzymes

AGE shortened chromosomal telomeres

ω–3 LCPUFA � AGE [316]

β-Galactosidase ↓ proteolytic activity → RPE deposits ω–3 LCPUFA → galactosidase [317]

The conceptual structure of this table was partially adapted from Ambati et al. [3]. AGE = Advanced glycation end products; 

Ang = angiopoietin; bFGF = basic fibroblast growth factor; BM = Bruch’s membrane; eNOS = endothelial nitric oxide synthase; 

ECM = extracellular matrix; H2O2 = hydrogen peroxide; iNOS = inducible nitric oxide synthase; ICAM = intracellular adhesion 

molecule; IRBP = interphotoreceptor-binding protein; KDR = VEGF receptor-2, kinase insert domain-containing receptor; 

MMP = matrix metalloproteinase; mitochond. fct = mitochondrial function; NO = nitric oxide; PEDF = pigment epithelium 

derived factor; ROI = reactive O2 intermediates; RAGE = receptor for advanced glycation end products; RPE = retinal pigment 

epithelium; SWL = near-UV light; TIMP = tissue inhibitor of matrix metalloproteinase; tPA = tissue-type plasminogen activator; 

uPA = urokinase-type plasminogen activator; VEGF = vascular endothelial growth factor; Δ = change; ↓ = reduction; � = 

decreased expression, inhibition or deactivation; → = factor or process leads to outcome.

Table 5. Continued
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of any ocular disorder that might obscure assessment of either AMD or lens opacities. 

The AMD-free group has three distinguishing characteristics that make it a robust 

and appropriate comparison group: (1) phenotype was determined annually over a 

12-year period with a standardized protocol by multiple professional graders who 

were masked to phenotypic information from previous years – adjudication with a 

standardized protocol occurred when discrepancies emerged; (2) criteria for AMD-

free classification (≤5 drusen of ≤63 μm in both eyes for the entire 12-year period) 

is stringent relative to those applied in previous association studies for AMD; (3) the 

age of the AREDS AMD-free group is in the range that AMD prevalence increases 

~3 times (from ~4% in those aged 74–79 years to ~12% in those aged ≥80 years) in 

population-based studies.

The mean age (±SE) of controls in was 76.9 ± 0.38 years; the value for the advanced 

AMD group was 79.7 ± 0.26 years. Half of those in the AMD-free group were women, 

while the corresponding value for the advanced AMD group was 58%. 5% of people 

in the AMD-free group were current smokers; the value for the advanced AMD group 

was 11%.

Bioinformatics and Statistical Modeling

Our bioinformatic and statistical approach is described in figure 3. In phase 1 we 

employed an empirical process to identify candidate gene sets and pathways associ-

ated with advanced AMD (steps 1–6). The first issue was to apply a valid definition of 

the lipid-associated genes from which we would interrogate relevant variants (step 1). 

The Lipid Metabolites and Pathways (LIPIDMAPS) Research Group maintains a pro-

teomic database of 2,919 human transcripts related to lipid-associated enzymatic activ-

ity, metabolic processes, and signaling pathways described in the Kyoto Encyclopedia 

of Genes and Genomes (www.genome.ad.jp/kegg) and Gene Ontology (www.geneon-

tology.org). We used transcript identifiers to extract information on the nature and 

positional coordinates of genes encoding these structures (step 2). Positional coordi-

nates of gene regions in the range of ±10,000 base pairs from current gene boundar-

ies were searched with utilities at The National Center for Biotechnology Information 

(NCBI) and Ensembl to define the universe of known variants from genes encoding 

LIPIDMAPS structures (step 3). We applied this information filter to microarray data 

from our 12-year natural history on AMD to extract SNPs for relationship with AMD 

(step 4). These variants were tested for association with advanced AMD in age-, sex-, 

and smoking-adjusted logistic regression models using a log-additive coding scheme 

(step 5). Results of these analyses were used to make inferences on candidate pathways 

and gene sets in the context of evidence on: (a) molecular genetics of AMD and (b) 

extant findings on processes both impacted by ω–3 LCPUFAs and implicated in health 

and disease of neural or vascular retina (step 6). Multiple single markers were associ-

ated with of inositol-based metabolic or signaling pathways.

In phase 2 we applied a knowledge-based approach to evaluate the predictive util-

ity of our gene set in determining the likelihood of having advanced AMD (steps 
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LIPIDMAPS PROTEOMIC DATABASE
2919 proteins impacted by or impacting lipid-associated molecules.

GENOMIC-PROTEOMIC DATABASES
2232 genes encoding elements of LIPIDMAPS protein set.

PUBLIC GENOMIC DATABASES
SNPs present within �10K bp of genes encoding LIPIDMAPS protein set.

100K SNP MICROARRAY
11140 SNPs in regions of genes encoding LIPIDMAPS protein set.

ASSOCIATION ANALYSES (Age-Related Eye Disease Study, AREDS)
Annual stereoscopic photographs on 12-year follow-up.

Masked professional graders applied standardized technique.
368 People with advanced AMD, 141 People with no clinical signs of AMD.

INFERENCE & HYPOTHESIS GENERATION
Evidence base on molecular genetics of AMD.

Role of lipids in modulating processes implicated in AMD pathogenesis.
Emerging theme: Inositol-based signaling systems/PH domains

GENOMIC DATABASES TO INTERROGATE INOSITOL-RELATED GENES
2274 SNPs in regions of 481 genes on 100K microarray.

SINGLE MARKERS FROM INOSITOL GENE SET
Multivariable models adjusted for age-, sex, and smoking.

Log-additive, dominant, and recessive classification.
SNPs in Hardy-Weinberg Equilibrium, called at ≥95%, MAF% > 1.

28 SNPs associated with advanced AMD at P-values ≤0.005.

INOSITOL GENE SET
Multi-SNP models adjusted for age-, sex, and smoking.

Stepwise selection process to develop parsimonious model.
11 SNPs in final inositol gene set model.

Regression fit diagnostics.
Predicted probability of advanced AMD.

PREDICTIVE MODELS ON INOSITOL GENE SET
Predicted probability of advanced AMD classified into 4 groups (< 25%, 25%–50%, 50%–75%, >75%).

Logistic model for advanced AMD run on categorical variable of predicted probability.
Results compared to those on 1500 randomly selected sets of 10 reliably called SNPs obtained from the 100K panel.

Phase 1

Phase 2

Fig. 3. Analytic method for identifying candidate gene set and specifying joint-action models.
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7–10). Our analytic methods are based on those developed by Lesnick et al. [15] to 

examine joint actions of common gene variations within biologic pathways as predic-

tors of disposition to complex disease. We used the NCBI search engine to obtain 

lists of all catalogued human genes associated with inositol (step 7). Positional coor-

dinates of these genes ± 10,000 base pairs were obtained and used to filter SNPs in 

from our 100K microarray. Distributions of inositol-related SNPs in Hardy-Weinberg 

equilibrium, called reliably at ≥95%, and present in at least 1% of the total sample, 

were examined for log-additive, dominant, and recessive associations with advanced 

AMD in age-, sex-, and smoking-adjusted logistic regression models (step 8). We 

specified a candidate inositol gene set with single markers containing complete data 

for all participants and attaining two-sided p values ≤0.005. We then ran age-, sex-, 

and smoking-adjusted joint action logistic regression models with members of this 

set. A stepwise selection process was applied to develop parsimonious models and 

regression diagnostics with the Hosmer and Lemershow lackfit method were run to 

determine whether variance of the final model violated assumptions necessary for 

valid inference (step 9). Eleven SNPs persisted in the final model. We modeled these 

variants simultaneously on occurrence of advanced AMD to derive the predicted 

probability of having AMD for each participant (values may range naturally from 0 

to 1) and classified these values into groups by increments of 0.25 (<0.25, 0.25–0.50, 

0.50–0.75, and 0.75–1.00). These probability categories represented the primary inde-

pendent variable of likelihood estimates in final predictive models of advanced AMD 

occurrence (step 10). The distribution of p values from 1,500 randomly selected sets 

of variants drawn from our total panel (96,774 SNPs) was used to evaluate signifi-

cance of our findings.

Results

At the time of publication the LIPIDMAPS database contained 2,919 proteins. We 

identified 2,232 genes encoding elements of these structures. Our 100K microarray 

contains 11,140 variants in gene regions associated with the LIPIDMAPS constructs. 

After examining results from this set, a number of AMD-associated variants with 

diverse positions across the genome emerged for genes associated with the inositol 

signaling pathway. There were 2,274 variants in a NCBI-specified inositol gene set 

present on our microarray; of these, 28 that were in Hardy-Weinberg equilibrium, 

called reliably at ≥95%, and present in at least 1% of the total sample also yielded p val-

ues ≤0.005 (fig. 4). This candidate inositol gene set was used in joint action models.

Eleven common variants with complete data from 11 inositol-related genes per-

sisted in the final model (table 6). This set yielded predictive probabilities that dis-

tinguished people with advanced AMD from their AMD-free peers (fig. 5). Relative 

to people with a predicted probability of advanced AMD <0.25 from our final model, 

the likelihood of having AMD among people with probabilities of >0.75 was increased 

99-fold (p = 1.0 × 10–17, Model 1, table 7). The overall p value of the model is 3.1 × 

10–21. For each 25% increase in predicted probability there was a 3.5-fold increased 
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likelihood of having advanced AMD (odds ratio = 3.5, 95% confidence interval = 

2.8–4.7). Comparison of our findings to those derived from p value distributions of 

1,500 analyses on randomly selected sets of SNPs from our complete array panel indi-

cated that results were not likely due to random sampling error. None of the 1,500 test 

models yielded a p value <1.2 × 10–9. In addition to analyses on variants with com-

plete data, we applied our approach to a set with less than 10% missing data for single 

markers. The final analysis in this model contained 19 SNPs that were present in 339 

people with advanced AMD and 128 AMD-free people (Model 2, table 7). Results did 

not change appreciably from the original model.

Discussion

These novel findings implicate molecular events driven by elements of inositol 

metabolism and signaling pathways in AMD pathogenesis. Our primary intent was 
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Fig. 4. Results from multivariable logistic regression analyses on SNPs identified as variants in genes 

encoding elements of inositol signaling pathways.
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to determine whether the joint action of common gene variations within members 

a systematically identified lipid-associated gene set could predict predisposition to 

advanced AMD. It is important to emphasize that inferences are most appropriately 

applied to the inositol-associated gene set (and not the individual variants used for 

predictive modeling) since our microarray panel did not have complete coverage of 

all genes, and in some cases did not contain variants in (or in linkage disequilib-

rium with those in) coding regions. The magnitude of effect in the joint action model 

exceeded that of any single marker. In the absence of mechanistic validation studies 

we cannot yet make conclusive inferences; however, extant work on molecular genet-

ics of AMD provides essential guidance in assessing the value of our findings.

We thus consider our results in the context of two biologically credible and related 

lines of evidence. The first is related to pleckstrin homology (PH) domain-containing 

Table 6. Variants included in the final predictive model for inositol-related factors and processes

Variant Gene MAF%

HGNC symbol Prox. exon (~bp) no AMD adv. AMD p value

rs4146894R PLEKHA1 <2,100 45.4 37.5 0.0001

rs2270960R ITPR2 <50 46.5 37.4 0.0009

rs2038490A PIGH <100 28.0 17.3 0.0013

rs2575876A ABCA1 <200 31.2 21.3 0.0022

rs1759752R PPAP2B <3,000 48.9 55.6 0.0028

rs2816955A NR5A2 >5,000 40.4 49.7 0.0040

rs1424166D CDH13 <2,000 49.3 55.8 0.0040

rs3784789A CSK >5,000 40.8 32.6 0.0055

rs3795451R CDC42BPA 3′ UTR 46.8 44.4 0.0087

rs697852A ITPKB >5,000 23.0 16.2 0.0095

rs766366D DGKB >5,000 46.5 37.9 0.0110

rs1529819A DEPDC2 <300 44.3 36.5 0.0116

The ‘no AMD’ (n = 141) group consisted of people who were AMD-free across the study. People in the 

advanced (Adv.) AMD group (n = 368) have neovascular AMD and/or geographic atrophy. p values 

are two-sided and from multivariable models including age at last photograph used to ascertain 

outcome, sex, and smoking (never, past, current). Superscripts in the ‘Variant’ column represent form 

of the variable applied in the final model: A = additive, D = dominant, R = recessive. Prox. exon = 

proximity to exon. ~bp = approximate number of base pairs. MAF = Minor allele frequency, PLEKHA1 

= pleckstrin homology domain containing, family A (phosphoinositide-binding specific) member 1; 

ITPR2 = inositol 1,4,5-triphosphate receptor, type 2; PIGH = phosphatidylinositol glycan anchor bio-

synthesis, class H; ABCA1 = ATP-binding cassette, subfamily A (ABC1), member 1; PPAP2B = phospha-

tidic acid phosphatase type 2B; NR5A2 = nuclear receptor subfamily 5, group A, member 2; CDH13 = 

cadherin 13, H-cadherin; CSK = c-src tyrosine kinase; CDC42BPA = CDC42 binding protein kinase α 

(DMPK-like); ITPKB = inositol 1,4,5-trisphosphate 3-kinase B; DGKB = diacylglycerol kinase, β; DEPDC2 

= DEP domain containing 2.
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effectors. A strong and often replicated susceptibility locus for advanced AMD exists 

on chromosome 10q26 [320–322]. PH domain-containing, family A (phosphoinosit-

ide binding-specific) member 1 (PLEKHA1) occupies this region and represents 1 

of the 3 genes most strongly associated with AMD worldwide. The other two genes 

(LOC387715/age-related maculopathy susceptibility 2 (ARMS2) and HtrA ser-

ine peptidase 1 gene (HTRA1)) are proximally positioned on 10q26 and in linkage 

disequilibrium with PLEKHA1 [322]. Pleckstrin is a PKC substrate containing two 

PH domains that bind phosphoinositides; it is involved in plasma membrane-based 

signaling systems [323]. PH domains represent approximately 1 in 10 of all domain 

structures in the human proteome [324] and exist on a number of protein kinases, 

GTPases/GTP regulators, adaptors, and phospholipases central to physiologic func-

tion [324, 325]. Figure 6 includes examples of molecules containing PH domains 

along with phosphoinositide-binding specificity. The key points are that PH domains 

bind phosphoinositides and act in recruitment and translocation of host proteins to 

the plasma membrane so that macromolecules of PI3K, GTP, and Ras signaling sys-

tems may be assembled.

DHA modulates Akt signaling in neuronal survival by influencing events at the PH 

domain. DHA acts as an effect modifier in the process of PH-mediated membrane 

translocation for the Akt system in a model system of neuronal cell survival [326]. 
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in inositol-related genes (cf. table 6). The explanatory value of the final model is strongest for the 

advanced AMD group, as approximately 7 in 10 people with AMD have at least a 70% predicted 

probability of having advanced AMD with the current set of variants (~40% of people with AMD 
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ties than those with AMD. Within probability categories there is usually a clear separation between 

groups. Fit of the model may be improved (~20% of controls have predicted probabilities between 

0.70 and 0.90) with data on additional SNPs.
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This action has been linked to DHA enrichment of PS, a phospholipid present in 

appreciable quantities within the neural retina. Increases in PS concentration facili-

tate interaction of Akt’s PH domain with the plasma membrane and thus allow a more 

efficient phosphorylation of the Akt. Akt activation in this system inhibits a key step in 

the apoptotic cascade and thereby promotes cell survival. How do these results relate 

to our own? PLEKHA1 binds specifically and with high affinity within the plasma 

membrane to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), a bioactive 

lipid and the dephosphorylation product of phosphatidylinositol-3,4,5-trisphosphate 

(PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is produced from a phosphatidylinositol-4,5-bis-

phosphate (PtdIns(4,5)P2) substrate after class IB phosphoinositide 3-kinase (PI3Kγ) 

activation. PI3Kγ ligands have been associated with atrophic and vasoproliferative ret-

inal pathology in model systems; these ligands include chemokines (IL-8, RANTES, 

macrophage inflammatory protein (MIP)-1a, MIP-2, MCP-1, Gro-α), pro-inflamma-

tory lipids (PAF), leukotrienes (LTB4), angiotensin II, and complement component 

C5. PtdIns(3,4)P2- and PtdIns(3,4,5)P3-pleckstrin complexes work within the PI3K 

pathway to regulate innate and adaptive immune cells, vascular smooth muscle cells, 

Table 7. Results of joint action models for inositol-related genes

Inositol-related genes Comparison (probability 

group)

OR (95% CI) p value

A vs. B

Model 1      

Full data set linear 

model

– 3.5 (2.8–4.7) 3.1×10–21

11 markers <0.25 0.25–0.50 10.5 (2.3–48.5) 0.64

<0.25 0.50–0.75 19.8 (4.5–87.0) 0.04

 <0.25  0.75–1.00 99.2 (22.3–440.9) 1.0×10–17

Model 2

95% complete data linear 

model

– 4.3 (3.3–5.7) 2.0×10–25

19 markers <0.25 0.25–0.50 7.8 (2.4–25.1) 0.26

<0.25 0.50–0.75 13.4 (4.5–40.6) 0.26

 <0.25  0.75–1.00 114.9 (37.4–353.0) 5.5×10–25

Odds ratios (OR) represent the increased likelihood of having advanced AMD relative to a one-step 

change in the scale of predicted probabilities (‘linear model’, e.g. moving from <0.25 to 0.25–0.50 or 

0.25–0.50 to 0.50–0.75) or each predicted probability category relative to the <0.25 group (A vs. B). 

All p values are two-sided. Model 1 was run on SNPs with 100% base calls for all participants (listed in 

table 6: ‘No AMD’ group, n = 141; AMD group, n = 368). Model 2 was run on SNPs from Model 1 and 

others with ≥90% call frequency. Results for Model 2 are based on 128 people without AMD and 339 

people with AMD.
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ponin homology; C1 = protein kinase C conserved region 1; C2 = protein kinase C conserved region 

2; GED = GTPase effector domain; X = phospholipase C catalytic domain X; Y = phospholipase C cata-

lytic domain Y; EF = EF hand; RGS = regulator of G-protein signaling; PL = phospholipase; Pro = pro-

line-rich; PTB = phosphotyrosine binding; SH2 = Src homology 2; SH3 = Src homology 3; b-ARK = 

β-adhesion-related kinase; Btk = Bruton’s tyrosine kinase; Sos = guanine nucleotide-exchange factor 

Son of sevenless; Vav = guanine-nucleotide exchange factor Vav.
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Fig. 7. Pathways are adapted from KEGG Pathway 04070. CPD-DAG = CDP-diacylglycerol; DAG = 

diacylglycerol; PA = phosphatidic acid; PtdIns = phosphatidylinositol; Ins = inositol. Numerals are 

used to represent roles of genes in this signaling pathway that contain variants associated with 

advanced age-related macular degeneration at p values ≤0.05 in age-, sex-, and smoking-adjusted 

logistic regression models. The HGNC symbols for genes containing AMD-associated variants are as 

follows: (1) INPP5E, SYNJ2; (2) PIP4K2A, PIP4K2B, PIP5K1A, PIP5K1C; (3) PIK3C2G; (4) INPP4B; (5) 

PLCB2, PLCE1, PLCG2; (6) ITPKB; (7) ITPR1, ITPR2; (8) DGKA, DGKB, DGKH, DGKI; (9) INPP4B; (10) PRKCA, 

PRKCB1. INPP5E = Inositol polyphosphate-5-phosphatase; SYNJ2 = synaptojanin 2, inositol phos-

phate 5′-phosphatase-2; PIP4K2A = phosphatidylinositol-5-phosphate 4-kinase, type II, α; PIP4K2B 

phosphatidylinositol-5-phosphate 4-kinase, type II, β; PIP5K1A = phosphatidylinositol-4-phosphate 

5-kinase, type I, α; PIP5K1C = phosphatidylinositol-4-phosphate 5-kinase, type I, γ; PIK3C2G = phos-

phoinositide-3-kinase, class 2, γ polypeptide; INPP4B = inositol polyphosphate-4-phosphatase, type 

II; PLCB2 = phospholipase C, β 2; PLCE1 = phospholipase C, ε 1; PLCG2 = phospholipase C, γ 2 (phos-

phatidylinositol-specific); ITPKB = inositol 1,4,5-trisphosphate 3-kinase B; ITPR1 = inositol 

1,4,5-triphosphate receptor, type 1; ITPR2 = inositol 1,4,5-triphosphate receptor, type 2; DGKA = dia-

cylglycerol kinase, α; DGKB = diacylglycerol kinase, β; DGKH = diacylglycerol kinase, η; DGKI = diacyl-

glycerol kinase, ι; INPP4B = inositol polyphosphate-4-phosphatase, type II; PRKCA = protein kinase C, 

α; PRKCB1 = protein kinase C, β 1.
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and platelets partially through their interaction with PH domains on serine/threonine 

kinases in the protein kinase B (Akt) signaling pathway. Figure 7 plots information on 

gene variants associated with AMD within the framework of the PI signaling system 

(genes containing sequence variants associated with advanced AMD at p values ≤0.05 

are represented in the diagram). The PH domains for Akt and pleckstrin share a spe-

cific affinity to PtdIns(3,4,5)P3. There are a number of points in figure 7, particularly 

(3) and (4), at which variants present in greater frequency among people with AMD 

may impact production of the precursor pool for the specific plekstrin ligand. These 

findings are intriguing as a number of research groups have emphasized the diffi-

culty of making inferences about the independent effects of PLEKHA1, LOC387715/

ARMS2, and HTRA1 because of the tendency for shared inheritance of haplotypes. 

Our findings support the importance of PLEKHA1 as part of an inositol-based sys-

tem as there was a great diversity in the position of inositol-related genes specified in 

the final joint action model. The variant from our final model within the PLEKHA1 

gene region yielded the strongest relationship of all 11 SNPs in the final model; but 

it is important to note, omitting this variable led to negligible change in the results. 

Table 8 contains annotations for the 20 genes represented in figure 7. These genes 

exist on 14 chromosomes. It is intriguing to observe genes with similar functions 

existing on different chromosomes were associated with our outcomes (diacylglyc-

erol kinases on chromosomes 7 and 12, PKC isoforms on chromosomes 16 and 17, 

and phospholipase C isoforms on chromosomes 10, 15, and 16).

A second line of evidence supported by our findings involves the relationship of 

dietary lipids, phosphoinositides, and genetics with calcium signaling. Szado et al. 

[327] demonstrated that phosphorylation of inositol triphosphate (IP3) receptors by 

the Akt system, prevented programmed cell death in a model cell system through 

inhibition of calcium release. This point is germane to our work, as ω–3 LCPUFAs 

have been shown to influence calcium homeostasis [328, 329]. Points (7) and (10) in 

figure 7 highlight the potential for disrupted inositol-modulated calcium signaling in 

people with advanced AMD.

Summary and Future Directions

Our general conclusions are that: (1) there is consistent evidence to suggest that ω–3 

LCPUFAs may act in protective roles for AMD; (2) genome-wide association studies 

may be applied to efficiently elucidate novel pathway- and gene set-based associations 

with complex diseases like AMD, and (3) a knowledge-based approach to exposure 

ascertainment (in this case, identification and annotation of lipid-associated genes) is 

valuable in planning, implementation efforts necessary to make valid inference about 

complex systems. The essential need for replication of findings in an independent 

sample is now being planned.
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Table 8. Annotations and positional coordinates of genes represented in the inositol-signaling sys-

tem (cf. fig. 7)

Figure 7 

group

Chr Start

bp

HGNC ID Symbol Gene name

(6)  1 224886016 6179 ITPKB inositol 1,4,5-trisphosphate 3-kinase B

(2)  1 149437696 8994 PIP5K1A phosphatidylinositol-4-phosphate 5-kinase, 

type I, α

(7)  3 4510136 6180 ITPR1 inositol 1,4,5-triphosphate receptor, type 1

(4) and (9)  4 143168636 6075 INPP4B inositol polyphosphate-4-phosphatase, 

type II

(1)  6 158322907 11504 SYNJ2 synaptojanin, synaptic inositol 

1,4,5-triphosphate 5 phosphatase, inositol 

phosphate 5′-phosphatase 2

(8)  7 14153770 2850 DGKB diacylglycerol kinase, β

(8)  7 136724925 2855 DGKI diacylglycerol kinase, ι

(1)  9 138442896 21474 INPP5E inositol polyphosphate-5-phosphatase

(2) 10 22865829 8997 PIP4K2A phosphatidylinositol 5 phosphate 4 kinase 

type 2 α

(5) 10 95743736 17175 PLCE1 phospholipase C, epsilon 1

(8) 12 54611213 2849 DGKA diacylglycerol kinase, α

(7) 12 26379552 6181 ITPR2 inositol 1,4,5-triphosphate receptor, type 2

(3) 12 18305741 8973 PIK3C2G phosphoinositide-3-kinase, class 2, γ 

polypeptide 

(8) 13 41520889 2854 DGKH diacylglycerol kinase, η

(5) 15 38367392 9055 PLCB2 phospholipase C, β 2 

1 phosphatidylinositol 4,5-bisphosphate 

phosphodiesterase β

(5) 16 80370408 9066 PLCG2 phospholipase C, γ 2 (phosphatidylinositol-

specific) 

1-phosphatidylinositol 4,5-bisphosphate 

phosphodiesterase γ 1

(10) 16 23754823 9395 PRKCB1 protein kinase C, β 1

(2) 17 34175470 8998 PIP4K2B phosphatidylinositol-5-phosphate 4-kinase, 

type II, β

(10) 17 61729216 9393 PRKCA protein kinase C, α

(2) 19 3581182 8996 PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, 

type I, γ

Figure 7 contains labels in the far left column of this table to represent positions in the inositol path-

way. Chr = Chromosome; bp = base pair.
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New and emerging concepts related to the content of the work we present should 

focus on the interrelationship of LCPUFAs with genetic factors impacting neural and 

vascular structure and function. Dietary LCPUFAs operate as key structural and sig-

naling molecules. They affect and are affected by key compounds with known vaso-, 

neuro-, and immunomodulatory actions. We have applied bioinformatic and sta-

tistical genetic techniques in an effort to examine lipid-dependent metabolism and 

signaling mechanisms as a step forward in guiding researchers in discovery of key 

pathways driving retinal response to developmental, demographic, environmental, 

and metabolic factors. To the extent that retinal tissue status of DHA is dependent 

upon and modifiable by diet, we may eventually arrive at some reasonable under-

standing of whether alterations in dietary or cellular lipid composition or modulation 

of lipid precursors, cleavage and biosynthetic enzymes, or metabolites will serve as an 

effective preventive intervention for retinal diseases.
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